Skip to main content
Log in

Machinability of natural fiber reinforced composites: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the recent years with greater emphasis on the environmental and sustainability aspects of engineering materials, natural fiber reinforced composites (NFRCs) are gaining more importance because of their numerous advantages. Several researchers have developed NFRCs using various natural fibers as well as matrix materials. However, real-world applications of NFRCs require some secondary operations in order to complete the assembly of the components or parts. Very few researchers have discussed issues related to the machinability of these NFRCs. In this paper, for the first time, a comprehensive literature review on machining of NFRCs is discussed with focus on drilling operation. The paper also reviews the studies on milling and turning of NFRCs. The distinct feature of this review is that it identifies the factors that affect the quality of the machined feature and provides general recommendations for the selection of process parameters so as to generate better quality holes during drilling. In addition, the review also discusses the challenges that hinder machining of NFRCs which is a significant contribution to the field of NFRCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52:259–320. doi:10.1080/15583724.2012.705409

    Article  Google Scholar 

  2. Zimniewska M, Myalski J, Koziol M, Mankowski J, Bogacz E (2012) Natural fiber textile structures suitable for composite materials. J Nat Fibers 9:229–239. doi:10.1080/15440478.2012.737176

    Article  Google Scholar 

  3. John MJ, Varughese KT, Thomas S (2008) Green composites from natural fibers and natural rubber: effect of fiber ratio on mechanical and swelling characteristics. J Nat Fibers 5:47–60. doi:10.1080/15440470801901480

    Article  Google Scholar 

  4. Westman MP, Laddha SG, Fifield LS, Kafentzis TA, Simmons KL (2010) Natural fiber composites: a review, report no. PNNL-19220. Report prepared for US Department of Energy

  5. Babu GD, Babu KS, Gowd BU (2013) Effect of machining parameters on milled natural fiber-reinforced plastic composites. J Adv Mech Eng 1:1–12. doi:10.7726/jame.2013.1001

    Google Scholar 

  6. Davim PJ, Silva LR, Festas A, Abrão AM (2009) Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing. Mater Des 30:228–234. doi:10.1016/j.matdes.2008.05.003

    Article  Google Scholar 

  7. Chandramohan D (2014) Studies on natural fiber particle reinforced composite material for conservation of natural resources. Adv Appl Sci Res 5:305–315

    Google Scholar 

  8. Zajac J, Hutyrová Z, Orlovský I (2014) Investigation of surface roughness after turning of one kind of the bio-material with thermoplastic matrix and natural fibers. Adv Mater Res 941–944:275–279. doi:10.4028/www.scientific.net/AMR.941-944.275

    Article  Google Scholar 

  9. Chandramohan D, Marimuthu K (2011) Drilling of natural fiber particle reinforced polymer composite material. Int J Adv Eng Res Stud 1:134–145

    Google Scholar 

  10. Venkateshwaran N, ElayaPerumal A (2013) Hole quality evaluation of natural fiber composite using image analysis technique. J Reinf Plast Compos 32:1188–1197. doi:10.1177/0731684413486847

    Article  Google Scholar 

  11. Ahmad J (2009) Machining of polymer composites. Springer, New York. doi:10.1007/978-0-387-68619-6

  12. Hocheng H (2011) Machining technology for composite materials: principles and practice. Woodhead Publishing, Cambridge. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  13. Davim JP (2013) Machining composites materials. October 2013, Wiley-ISTE

  14. Davim JP (2015) Machinability of fibre-reinforced plastics. DE GRUYTER doi: 10.1515/9783110292251-008

  15. Alsaeed T, Yousif BF, Ku H (2013) A review on the mechanical properties and machinability of natural fiber reinforced composites. Int J Precis Technol 3:152–182

    Article  Google Scholar 

  16. Gohil PP, Chaudhary V, Patel K (2015) Manufacturing of natural fibre reinforced polymer composites. doi: 10.1007/978-3-319-07944-8_7

  17. Chandramohan D, Marimuthu K (2011) A review on natural fibers. Int J Res Rev Appl Sci 8:194–206

    Google Scholar 

  18. Ho M, Wang H, Lee J-H, Ho C, Lau K, Leng J, Hui D (2011) Critical factors on manufacturing processes of natural fibre composites. Compos Part B 43:3549–3562. doi:10.1016/j.compositesb.2011.10.001

    Article  Google Scholar 

  19. Al-Oqla FM, Alothman OY, Jawaid M, Sapuan SM, Es-Saheb MH (2006) Processing and properties of date palm fibers and its composites. Biomass Bioenergy. doi:10.1016/j.biombioe.2005.11.019

    Google Scholar 

  20. Debnath K, Singh I, Dvivedi A (2015) On the analysis of force during secondary processing of natural fiber reinforced composite laminates. Polym Compos. doi:10.1002/pc.23572

    Google Scholar 

  21. Davim JP, Reis P (2004) Machinability study on composite (polyetheretherketone reinforced with 30% glass fibre–PEEK GF 30) using polycrystalline diamond (PCD) and cemented carbide (K20) tools. Int J Adv Manuf Technol 23:412–418. doi:10.1007/s00170-003-1779-7

    Article  Google Scholar 

  22. Davim JP, Mata F (2005) Optimisation of surface roughness on turning fibre-reinforced plastics (FRPs) with diamond cutting tools. Int J Adv Manuf Technol 26:319–323. doi:10.1007/s00170-003-2006-2

    Article  Google Scholar 

  23. Davim JP, Mata F (2006) Physical cutting model of polyetheretherketone composites. Mater Des 27:847–852. doi:10.1016/j.matdes.2005.04.008

    Article  Google Scholar 

  24. Davim JP, Mata F, Gaitonde VN, Karnik SR (2010) Machinability evaluation in unreinforced and reinforced PEEK composites using response surface models. J Thermoplast Compos Mater 23:5–18. doi:10.1177/0892705708093503

    Article  Google Scholar 

  25. Ning FD, Cong WL, Pei ZJ, Treadwell C (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132. doi:10.1016/j.ultras.2015.11.002

    Article  Google Scholar 

  26. Karpat Y, Bahtiyar O, Deger B (2012) Milling force modelling of multidirectional carbon fiber reinforced polymer laminates. Proc CIRP 1:460–465. doi:10.1016/j.procir.2012.04.082

    Article  Google Scholar 

  27. Liu D, Tang Y, Cong WL (2012) A review of mechanical drilling for composite laminates. Compos Struct 94:1265–1279. doi:10.1016/j.compstruct.2011.11.024

    Article  Google Scholar 

  28. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121. doi:10.1016/j.ijmachtools.2012.01.006

    Article  Google Scholar 

  29. Arola D, Sultan MB, Ramulu M (2002) Finite element modeling of edge trimming fiber reinforced plastics. J Manuf Sci Eng 124:32–41. doi:10.1115/1.1428329

    Article  Google Scholar 

  30. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Technol 160:160–167. doi:10.1016/j.jmatprotec.2004.06.003

    Article  Google Scholar 

  31. Salleh Z, Berhan MN, Hyie KM, Taib YM, Kalam A, Roselina NRN (2013) Open hole tensile properties of kenaf composite and kenaf/fibreglass hybrid composite laminates. Proc Eng 68:399–404. doi:10.1016/j.proeng.2013.12.198

    Article  Google Scholar 

  32. Abrão AM, Faria PE, Rubio JCC, Reis P, Davim JP (2007) Drilling of fiber reinforced plastics a review. J Mater Process Technol 186:1–7. doi:10.1016/j.jmatprotec.2006.11.146

    Article  Google Scholar 

  33. Campbell FC (2004) Manufacturing process for advanced composites. Elsevier Ltd, New York, pp 448–449, Chap. 12

    Google Scholar 

  34. Babu D, Babu KS, Gowd BUM (2012) Drilling uni-directional fiber-reinforced plastics manufactured by hand lay-up influence of fibers. Am J Mater Sci Technol 1:1–10. doi:10.7726/ajmst.2012.1001

    Google Scholar 

  35. Durão L, Tavares J, de Albuquerque V, Marques J, Andrade O (2014) Drilling damage in composite material. Materials 7:3802–3819. doi:10.3390/ma7053802

    Article  Google Scholar 

  36. Durão LMP, Gonçalves DJS, Tavares JMRS, de Albuquerque VHC, Panzera TH, Silva LJ, Vieira AA, Baptista APM (2013) Drilling delamination outcomes on glass and sisal reinforced plastics. Mater Sci Forum 730–732:301–306. doi:10.4028/www.scientific.net/MSF.730-732.301

    Google Scholar 

  37. Babu J, Sunny T, Paul NA, Mohan KP, Philip J, Davim JP (2015) Assessment of delamination in composite materials: a review. Proc Inst Mech Eng B J Eng Manuf. doi:10.1177/0954405415619343

    Google Scholar 

  38. Bajpai PK, Debnath K, Singh I (2015) Hole making in natural fiber-reinforced polylactic acid laminates: an experimental investigation. J Thermoplast Compos Mater 1–17. doi: 10.1177/0892705715575094

  39. Patel K, Gohil PP, Chaudhary V, Patel K (2015) Investigation on drilling of banana fibre reinforced composites. International Conference on Civil, Materials and Environmental Sciences (CMES 2015) 1:201–205.

  40. Abilash N, Sivapragash M (2013) Optimizing the delamination failure in bamboo fiber reinforced polyester composite. J King Saud Univ Eng Sci. doi:10.1016/j.jksues.2013.09.004

    Google Scholar 

  41. Ramesh M, Palanikumar K, Reddy KH (2014) Experimental investigation and analysis of machining characteristics in drilling hybrid glass-sisal-jute fiber reinforced polymer composites. 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 2–7

  42. Bajpai PK, Singh I (2013) Drilling behavior of sisal fiber-reinforced polypropylene composite laminates. J Reinf Plast Compos 32:1569–1576. doi:10.1177/0731684413492866

    Article  Google Scholar 

  43. Kovalchenko AM (2013) Studies of the ductile mode of cutting brittle materials (a review). J Superhard Mater 35:259–276. doi:10.3103/S1063457613050018

    Article  Google Scholar 

  44. Debnath K, Singh I, Dvivedi A (2014) Drilling characteristics of sisal fiber-reinforced epoxy and polypropylene composites. Mater Manuf Process 29:1401–1409. doi:10.1080/10426914.2014.941870

    Article  Google Scholar 

  45. Jayabal S, Natarajan U (2011) Drilling analysis of coir-fibre-reinforced polyester composites. Bull Mater Sci 34:1563–1567. doi:10.1007/s12034-011-0359-y

    Article  Google Scholar 

  46. Jayabal S, Natarajan U (2010) Optimization of thrust force, torque, and tool wear in drilling of coir fiber-reinforced composites using Nelder–Mead and genetic algorithm methods. Int J Adv Manuf Technol 51:371–381. doi:10.1007/s00170-010-2605-7

    Article  Google Scholar 

  47. Yallew TB, Kumar P, Singh I (2015) A study about hole making in woven jute fabric-reinforced polymer composites. Proc Inst Mech Eng L: J Mater: Des Appl 0:1–11. doi:10.1177/1464420715587750

    Google Scholar 

  48. Jayabal S, Natarajan U, Sekar U (2011) Regression modeling and optimization of machinability behavior of glass-coir-polyester hybrid composite using factorial design methodology. Int J Adv Manuf Technol 55:263–273. doi:10.1007/s00170-010-3030-7

    Article  Google Scholar 

  49. Jayabal S, Velumani S, Navaneethakrishnan P, Palanikumar K (2013) Mechanical and machinability behaviors of woven coir fiber-reinforced polyester composite. Fibers Polym 14:1505–1514. doi:10.1007/s12221-013-1505-5

    Article  Google Scholar 

  50. Balaji NS, Jayabal S, Kalyana Sundaram S, Rajamuneeswaran S, Suresh P (2014) Delamination analysis in drilling of coir-polyester composites using design of experiments. Adv Mater Res 984–985:185–193. doi:10.4028/www.scientific.net/AMR.984-985.185

    Article  Google Scholar 

  51. Sakthivel M, Vijayakumar S, Prasad NK (2015) Drilling analysis on basalt/sisal reinforced polymer composites using ANOVA and regression model. Appl Math Sci 9:3285–3290

    Article  Google Scholar 

  52. Velumani S, Navaneethakrishnan P, Jayabal S, Robinson Smart DS (2013) Mathematical modeling and prediction of the thrust force and torque in drilling of sisal/glass-vinyl ester hybrid composite using the RSM, MLPNN, RBFN and ENN methods. Indian J Eng Mater Sci 20:289–298

    Google Scholar 

  53. Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2010) Influence of alkali-treated fibers on the mechanical properties and sisal fiber hybrid polymer composite. Polym Compos 723–731

  54. Azuan SAS, Juraidi JM, Muhamad WMW (2012) Evaluation of delamination in drilling rice husk reinforced polyester composites. Appl Mech Mater 232:106–110. doi:10.4028/www.scientific.net/AMM.232.106

    Article  Google Scholar 

  55. Babu GD, Babu KS, Gowd BU (2013) Optimization of machining parameters in drilling hemp fiber reinforced composites to maximize the tensile strength using design experiments. Indian J Eng Mater Sci 20:385–390

    Google Scholar 

  56. Ramesh M, Palanikumar K, Reddy KH (2014) Influence of tool materials on thrust force and delamination in drilling sisal-glass fiber reinforced polymer (S-GFRP) composites. Proc Mater Sci 5:1915–1921. doi:10.1016/j.mspro.2014.07.513

    Article  Google Scholar 

  57. Sridharan V, Muthukrishnan N (2013) Optimization of machinability of polyester/modified jute fabric composite using grey relational analysis (GRA). Proc Eng 64:1003–1012. doi:10.1016/j.proeng.2013.09.177

    Article  Google Scholar 

  58. Vinayagamoorthy R, Rajeswari N, Vijayshankar S, Vivekanandan M, Bellala SRM, Subramaniam KRV (2014) Surface and sub-surface analysis of hybrid polymer composites during machining operations. Proc Mater Sci 5:2075–2083. doi:10.1016/j.mspro.2014.07.542

    Article  Google Scholar 

  59. Sivasubramanian P, Thiruchitrambalam M, Suresh AG (2013) Drilling profile characteristics of natural fibers reinforced composites on mechanical properties. Int J Sci Eng Res 1–9

  60. Aravindh S, Umanath K (2015) Delamination in drilling of natural fibre reinforced polymer composites produced by compression moulding. Appl Mech Mater 766–767:796–800. doi:10.4028/www.scientific.net/AMM.766-767.796

    Article  Google Scholar 

  61. Sen T, Reddy HNJ (2011) Application of sisal, bamboo, coir and jute natural composites in structural upgradation. Int J Innov Manage Technol 2:186–191

    Google Scholar 

  62. Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos A: Appl Sci Manuf 35:377–383. doi:10.1016/j.compositesa.2003.09.017

    Article  Google Scholar 

  63. Misra RK, Kumar S, Sandeep K, Misra A (2008) Dynamic analysis of banana fiber reinforced high-density polyethylene/poly (ε-CAPROLACTONE) composites. J Mech Mater Struct 3:107–125

    Article  Google Scholar 

  64. Gon D, Das K, Paul P, Maity S (2012) Jute composites as wood substitute. Int J Text Sci 1:84–93. doi:10.5923/j.textile.20120106.05

    Article  Google Scholar 

  65. Corradi S, Isidori T, Corradi M, Soleri F, Olivari L (2009) Composite boat hulls with bamboo natural fibres. Int J Mater Prod Technol 36

  66. Al-Kaabi K, Al-Khanbashi A, Hammami A (2005) Natural fiber reinforced composites from date fibers. 1–8

  67. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. doi:10.1016/j.compscitech.2006.06.019

    Article  Google Scholar 

  68. Jeyanthi S, Rani JJ (2012) Improving mechanical properties by kenaf natural long fiber reinforced composite for automotive structures. J Appl Sci Eng 15:275–280

    Google Scholar 

  69. Nagarajan V. (2012) Sustainable biocomposites from “ green ” plastics and natural fibers. Dissertation, The University of Guelph

  70. Bodros E, Baley C (2008) Study of the tensile properties of stinging nettle fibres (urtica dioica). Mater Lett 62:2143–2145. doi:10.1016/j.matlet.2007.11.034

    Article  Google Scholar 

  71. Kumar SP, Ramakrishnan K, Kirupha DS, Sivanesan S (2010) Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Braz J Chem Eng 27:347–355. doi:10.1590/S0104-66322010000200013

    Google Scholar 

  72. Modibbo UU, Aliyu BA, Nkafamiya II (2009) The effect of mercerization media on the physical properties of local plant bast fibres. Int J Phys Sci 4:698–704

    Google Scholar 

  73. Ismail MA (2007) Compressive and tensile strength of natural fibre-reinforced cement base composites. Al-Rafidain Eng

  74. Ruksakulpiwat Y, Suppakarn N, Sutapun W, Thomthong W (2007) Vetiver-polypropylene composites: physical and mechanical properties. Compos A: Appl Sci Manuf 38:590–601. doi:10.1016/j.compositesa.2006.02.006

    Article  Google Scholar 

  75. Vinayagamoorthy R, Rajeswari N, Karthikeyan S (2015) Investigations of damages during drilling of natural sandwich composites. Appl Mech Mater 766–767:812–817. doi:10.4028/www.scientific.net/AMM.766-767.812

    Article  Google Scholar 

  76. Vinayagamoorthy R, Rajeswari N (2012) Analysis of cutting forces during milling of natural fibered composites using fuzzy logic. Int J Compos Mater Manuf 2:15–21

    Google Scholar 

  77. Harun A, Haron HC, Ghani JA, Mokhtar S, Ting ST (2015) Study the effect of milling parameters on surface roughness during milling kenaf fibre reinforced plastic. Adv Environ Biol 9:46–52

    Google Scholar 

  78. Chegdani F, Mezghani S, El Mansori M, Mkaddem A (2015) Fiber type effect on tribological behavior when cutting natural fiber reinforced plastics. Wear. doi:10.1016/j.wear.2014.12.039

    Google Scholar 

  79. Somsakova Z, Zajac J, Michalik P, Kasina M (2012) Machining of wood plastic composite (pilot experiment). Mater Plast 55–57

  80. Kennametal (2011) Composite machining. https://www.kennametal.com/content/dam/kennametal/kennametal/common/Resources/CatalogsLiterature/Industry%20Solutions/Composite_material_machining_guide_Aerospac.pdf. A34-55 (Accessed on May 2016)

  81. Capello E (2004) Workpiece damping and its effect on delamination damage in drilling thin composite laminates. J Mater Process Technol 148:186–195. doi:10.1016/S0924-0136(03)00812-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid I. Alzebdeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, M.M.A., Arunachalam, R. & Alzebdeh, K.I. Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Technol 88, 2985–3004 (2017). https://doi.org/10.1007/s00170-016-9010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9010-9

Keywords

Navigation