Skip to main content

Advertisement

Log in

A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the advent of cloud manufacturing (CMfg), more and more services in CMfg platforms may provide the same functionality but differ in performance. In order to insure the manufacturing cloud to match the complicated task requirements, composited CMfg service optimal selection (CCSOS) is becoming increasingly important. This study proposes a new approach for such CCSOS problems, the so-called hybrid artificial bee colony (HABC) algorithm, which employs both the probabilistic model of Archimedean copula estimation of distribution algorithm (ACEDA) and the chaos operators of global best-guided artificial bee colony to generate the offspring individuals with consideration of quality of service (QoS) and CMfg environment. Different-scale CCSOS problems are adopted to evaluate the performance of the proposed HABC. Experimental results have shown that the HABC can find better solutions compared with such algorithms as genetic algorithm, particle swarm optimization, and basic artificial bee colony algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanchez LM, Nagi R (2001) A review of agile manufacturing systems. Int J Prod Res 39(16):3561–3600

    Article  MATH  Google Scholar 

  2. Smith MA, Kumar RL (2004) A theory of application service provider (ASP) use from a client perspective. Inf Manag 41(8):977–1002

    Article  Google Scholar 

  3. Tao F, Hu YF, Zhou ZD (2008) Study on manufacturing grid & its resource service optimal-selection system. Int J Adv Manuf Technol 37(9–10):1022–1041

    Article  Google Scholar 

  4. Pallis G (2010) Cloud computing: the new frontier of internet computing. IEEE Internet Comput 14(5):70–73

    Article  Google Scholar 

  5. Zhang L, Luo Y, Tao F, Li BH, Ren L, Zhang X, Guo H, Cheng Y, Hu A, Liu Y (2014) Cloud manufacturing: a new manufacturing paradigm. Enterp Inf Syst 8(2):167–187

    Article  Google Scholar 

  6. Buckholtz B, Ragai I, Wang L (2015) Cloud manufacturing: current trends and future implementations. J Manuf Sci Eng Trans ASME 137(4):902–909

    Article  Google Scholar 

  7. Kilincci O, Onal SA (2011) Fuzzy AHP approach for supplier selection in a washing machine company. Expert Syst Appl 38(8):9656–9664

    Article  Google Scholar 

  8. Ge W, Huang SH, Dismukes JP (2004) Product-driven supply chain selection using integrated multi-criteria decision-making methodology. Int J Prod Econ 91(1):1–15

    Article  Google Scholar 

  9. Moslehi G, Khorasanian D (2013) Optimizing blocking flow shop scheduling problem with total completion time criterion. Comput Oper Res 40(7):1874–1883

    Article  MathSciNet  MATH  Google Scholar 

  10. Naderi B, Mousakhani M, Khalili M (2013) Scheduling multi-objective open shop scheduling using a hybrid immune algorithm. Int J Adv Manuf Technol 66(5–8):895–905

    Article  Google Scholar 

  11. Li B-H, Zhang L, Wang S-L, Tao F, Cao J-W, Jiang X-D, Song X, Chai X-D (2010) Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integr Manuf Syst 16(1):1–16

    Google Scholar 

  12. Luo Y, Zhang L, Tao F, Ren L, Liu Y, Zhang Z (2013) A modeling and description method of multidimensional information for manufacturing capability in cloud manufacturing system. Int J Adv Manuf Technol 69(5–8):961–975

    Article  Google Scholar 

  13. Wang XV, Xu XW (2013) An interoperable solution for cloud manufacturing. Robot Comput Integr Manuf 29(4):232–247

    Article  MathSciNet  Google Scholar 

  14. Tao F, Zuo Y, Xu LD, Zhang L (2014) IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf 10(2):1547–1557

    Article  Google Scholar 

  15. Wu D, Greer MJ, Rosen DW, Schaefer D (2013) Cloud manufacturing: strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579

    Article  Google Scholar 

  16. Ren L, Zhang L, Tao F, Zhao C, Chai X, Zhao X (2015) Cloud manufacturing: from concept to practice. Enterp Inf Syst 9(2):186–209

    Article  Google Scholar 

  17. He W, Xu L (2015) A state-of-the-art survey of cloud manufacturing. Int J Comput Integr Manuf 28(3):239–250

    Article  Google Scholar 

  18. Tianri W, Shunsheng G, Chi-Guhn L (2014) Manufacturing task semantic modeling and description in cloud manufacturing system. Int J Adv Manuf Technol 71(9–12):2017–2031

    Google Scholar 

  19. Song T, Liu H, Wei C, Zhang C (2014) Common engines of cloud manufacturing service platform for SMEs. Int J Adv Manuf Technol 73(1–4):557–569

    Article  Google Scholar 

  20. Cardellini V, Casalicchio E, Grassi V, Lo Presti F (2007) Flow-based service selection for web service composition supporting multiple QoS classes. In: IEEE Int. Conf. Web Service pp 743–750

  21. Kholy WE, Bentahar J, Menshawy ME, Qu H, Dssouli R (2014) Modeling and verifying choreographed multi-agent-based web service compositions regulated by commitment protocols. Expert Syst Appl 41(16):7478–7494

    Article  Google Scholar 

  22. Zhao Y, Li Y, Raicu I, Lu S, Lin C, Zhang Y, Tian W, Xue R (2015) A service framework for scientific workflow management in the cloud. IEEE Trans Serv Comput 8(6):930–944

    Article  Google Scholar 

  23. Fernandez E, Toledo CM, Galli MR, Salomone E, Chiotti O (2015) Agent-based monitoring service for management of disruptive events in supply chains. Comput Ind 70:89–101

    Article  Google Scholar 

  24. Zhang X, Li S, Xiao J (2015) Service integration-oriented workflow model and implementation method. J Comput Appl 35(7):1993–1998, 2003

    Google Scholar 

  25. Wan Z, Wang G, Sun B (2013) A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems. Swarm Evol Comput 8:26–32

    Article  Google Scholar 

  26. Cao Y, Wang S, Kang L, Li C, Guo L (2015) Study on machining service modes and resource selection strategies in cloud manufacturing. Int J Adv Manuf Technol 81(1–4):597–613

    Article  Google Scholar 

  27. Wang S-l, Guo L, Kang L, Li C-s, Li X-y, Stephane YM (2014) Research on selection strategy of machining equipment in cloud manufacturing. Int J Adv Manuf Technol 71(9–12):1549–1563

    Article  Google Scholar 

  28. Tao F, Hu Y, Zhao D, Zhou Z, Zhang H, Lei Z (2009) Study on manufacturing grid resource service QoS modeling and evaluation. Int J Adv Manuf Technol 41(9–10):1034–1042

    Article  Google Scholar 

  29. Tao F, Hu Y, Zhao D, Zhou Z (2009) An approach to manufacturing grid resource service scheduling based on trust-QoS. Int J Comput Integr Manuf 22(2):100–111

    Article  Google Scholar 

  30. Wang D, Yang Y, Mi Z (2015) A genetic-based approach to web service composition in geo-distributed cloud environment. Comput Electr Eng 43:129–141

    Article  Google Scholar 

  31. Liangzhao Z, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) QoS-aware middleware for Web services composition. IEEE Trans Softw Eng 30(5):311–327

    Article  Google Scholar 

  32. Tao F, Zhao D, Hu Y, Zhou Z (2008) Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system. IEEE Trans Ind Inf 4(4):315–327

    Article  Google Scholar 

  33. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  34. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  35. Sang HY, Gao L, Pan QK (2012) Discrete artificial bee colony algorithm for lot-streaming flowshop with total flowtime minimization. Chin J Mech Eng 25(5):990–1000

    Article  Google Scholar 

  36. Pan QK, Wang L, Li JQ, Duan JH (2014) A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Int J Manag Sci 45:42–56

    Google Scholar 

  37. Li JQ, Pan QK, Tasgetiren MF (2014) A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities. Appl Math Model 38(3):1111–1132

    Article  MathSciNet  Google Scholar 

  38. Han YY, Liang JJ, Pan QK, Li JQ, Sang HY, Cao NN (2013) Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem. Int J Adv Manuf Technol 67(1–4):397–414

    Article  Google Scholar 

  39. Tasgetiren MF, Pan QK, Suganthan PN, Chen AHL (2011) A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops. Inf Sci 181(16):3459–3475

    Article  MathSciNet  Google Scholar 

  40. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  41. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Eng Appl Math 346(4):328–348

    MathSciNet  MATH  Google Scholar 

  42. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  43. Kumar VV, Liou FW, Balakrishnan SN, Kumar V (2015) Economical impact of RFID implementation in remanufacturing: a chaos-based interactive artificial bee colony approach. J Intell Manuf 26(4):815–830

    Article  Google Scholar 

  44. Muhlenbein H, Paass G (1996) From recombination of genes to the estimation of distributions. I. Binary parameters. Proc Int Conf on Parallel Problem Solving from Nature

  45. Piotr J, Fabrizio D, Wolfgang H, Tomasz R (2010) Copula theory: an introduction copula theory and its applications. In: Lecture notes in statistics. pp 3–31

  46. Zelinka I, Chadli M, Davendra D, Senkerik R, Pluhacek M, Lampinen J (2013) Hidden periodicity—chaos dependance on numerical precision. Adv Intel Syst Comput 210:47–59

    Article  MATH  Google Scholar 

  47. Hui L, Ruiyao N, Jing L, Zheng Z (2013) A chaotic non-dominated sorting genetic algorithm for the multi-objective automatic test task scheduling problem. Appl Soft Comput 13(5):2790–2802

    Article  Google Scholar 

  48. Wei L, Laibin Z, Mingda W (2011) The chaos differential evolution optimization algorithm and its application to support vector regression machine. J Softw 6(7):1297–1304

    Article  Google Scholar 

  49. Metlicka M, Davendra D (2015) Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol Comput 25:15–28

    Article  Google Scholar 

  50. Huang B, Li C, Tao F (2014) A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system. Enterp Inf Syst 8(4):445–463

    Article  Google Scholar 

  51. Tao F, LaiLi Y, Xu L, Zhang L (2013) FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf 9(4):2023–2033

    Article  Google Scholar 

  52. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

  53. Kumar VV, Pandey MK, Tiwari MK, Ben-Arieh D (2010) Simultaneous optimization of parts and operations sequences in SSMS: a chaos embedded Taguchi particle swarm optimization approach. J Intell Manuf 21(4):335–353

    Article  Google Scholar 

  54. Tao F, Zhao D, Hu Y, Zhou Z (2010) Correlation-aware resource service composition and optimal-selection in manufacturing grid. Eur J Oper Res 201(1):129–143

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifan Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yao, X. A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition. Int J Adv Manuf Technol 88, 3371–3387 (2017). https://doi.org/10.1007/s00170-016-9034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9034-1

Keywords

Navigation