Skip to main content
Log in

Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The distortion in machining aeronautical aluminum alloy parts (AAAPs) is one of the serious challenges in the aviation industry, and the residual stresses produced in multimanufacturing steps are the main cause. In order to get a comprehensive understanding of the problems about residual stresses and distortion in machining AAAPs, the state-of-the-art in several aspects including the generation reasons of residual stresses, the factors influencing distortion during machining, the measurement methods of residual stresses, the prediction and controlling methods of distortion are summarized in this paper. The generation mechanism of the bulk residual stress inner materials and the machining-induced residual stresses, as well as the factors affecting two kinds of residual stresses are stated. Also, the influences of residual stresses and machining process conditions on distortion are analyzed. Furthermore, the common residual stress measurement methods and its application scope are summarized. Significantly, the differences, advantages, and disadvantages of various prediction methods are analyzed. The methods of controlling distortion before and after machining are summarized. Finally, the paper gives out further research on the distortion in machining AAAPs in aeronautical manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sim WM (2010) Challenges of residual stress and part distortion in the civil airframe industry. Int J Microstructure and Materials Properties 5(4/5):446–455. doi:10.1504/IJMMP.2010.037621

    Article  Google Scholar 

  2. Tang ZT, Yu T, Xu LQ, Liu ZQ (2013) Machining deformation prediction for frame components considering multifactor coupling effects. Int J Adv Manuf Technol 68:187–196. doi:10.1007/s00170-012-4718-7

    Article  Google Scholar 

  3. Santos MC Jr, Machado AR, Sales WF, Barrozo MAS, Ezugwu EO (2016) Machining of aluminum alloys: a review. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8431-9

    Google Scholar 

  4. Masoudi S, Amini S, Saeidi E, Eslami-Chalander H (2015) Effect of machining-induced residual stress on the distortion of thin-walled parts. Int J Adv Manuf Technol 76:597–608. doi:10.1007/s00170-014-6281-x

    Article  Google Scholar 

  5. Chantzis D, Van-der-Veen S, Zettler J, Sim WM (2013) An industrial workflow to minimize part distortion for maching of large monolithic components in aerospace industry. Proceedings of the 14th CIRP Conference on Modeling of Machining Operations, Turin, Italy, pp 281–286. doi:10.1016/j.procir.2013.06.103

    Google Scholar 

  6. Wang ZJ, Chen WY, Zhang YD, Chen ZT, Liu Q (2005) Study on the machining distortion of thin walled part caused by redistribution of residual stress. Chin J Aeronaut 18(2):175–179. doi:10.1016/S1000-9361(11)60325-7

    Article  Google Scholar 

  7. Guo H, Zuo DW, Wu HB, Xu F, Tong GQ (2009) Prediction on milling distortion for aero-multi-frame parts. Mater Sci Eng A 499:230–233. doi:10.1016/j.msea.2007.11.137

    Article  Google Scholar 

  8. Cerutti X, Mocellin K (2015) Influence of the machining sequence on the residual stress redistribution and machining quality: analysis and improvement using numerical simulations. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7521-4

    Google Scholar 

  9. Sim WM (2009). Deliverable 1.1.10-Publishable Final Activity Report. COMPACT publishable report submitted to the European Commission http://cordis.europa.eu/project/rcn/43743

  10. Withers PJ, Bhadeshia HKDH (2001) Residual stress-II: nature and origins. Mater Sci Tech 17:366–375. doi:10.1179/026708301101510087

    Article  Google Scholar 

  11. Withers PJ, Bhadeshia HKDH (2001) Residual stress-I: measurement techniques. Mater Sci Tech 17:355–365. doi:10.1179/026708301101509980

    Article  Google Scholar 

  12. Han RD (2007) Metal cutting theory and cutting tools. Harbin Institute of Technology press, Harbin

    Google Scholar 

  13. Ma K, Goetz R, Svrivatsa S (2010) ASM Handbook. Metals Process Simulation 22B:386–402

    Google Scholar 

  14. Dai SL, Zhang K, Yang SJ, Huang M (2012) Advanced aviation aluminum alloy materials and applications. National Defence Industry Press, Beijing

    Google Scholar 

  15. Robinson JS, Redington W (2015) The influence of alloy composition on residual stresses in heat treated aluminium alloys. Mater Charact 105:47–55. doi:10.1016/j.matchar.2015.04.017

    Article  Google Scholar 

  16. Robinson JS, Tanner DA, Truman CE (2014) The origin and management of residual stress in heat-treatable aluminium alloys. Strain 50:185–207. doi:10.1111/str.12091

    Article  Google Scholar 

  17. Chobaut N, Carron D, Arsène S, Schloth P, Drezet JM (2015) Quench induced residual stress prediction in heat treatable 7xxx aluminium alloy thick plates using Gleeble interrupted quench tests. J Mater Process Tech 222:373–380. doi:10.1016/j.jmatprotec.2015.03.029

    Article  Google Scholar 

  18. Yang XW, Zhu JC, Lai ZH, Liu Y, He D, Nong ZS (2013) Finite element analysis of quenching temperature field, residual stress and distortion in A357 aluminum alloy large complicated thin-wall workpieces. Trans Nonferrous Met Soc China 23:1751–1760. doi:10.1016/S1003-6326(13)62657-6

    Article  Google Scholar 

  19. Navalho D, Deus AM, Infante V (2012) Residual stress due to quenching in aluminum forging parts for aerospace applications:finite element analysis and contour method measurement. Proceedings of the 6th International Quencing and Control of Distortion Conference, Chicago, Illinois, USA, pp 281–293

    Google Scholar 

  20. Younger MS, Eckelmeyer KH (2007). Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes. http://www.osti.gov/scitech/biblio/922073/

  21. Sim WM (2012). Residual stress engineering in manufacture of aerospace structural parts. http://www.transport-research.info/sites/default/files/project/documents/20121115_114058_91510_Paper_IDE_2011.pdf

  22. Prime MB, Hill MR (2002) Residual stress, stress relief, and inhomogeneity in aluminum plate. Scripta Mater 46:77–82. doi:10.1016/S1359-6462(01)01201-5

    Article  Google Scholar 

  23. Robinson JS, Hossain S, Truman CE (2010) Residual stress in 7449 aluminium alloy forgings. Mater Sci Eng A 527:2603–2612. doi:10.1016/j.msea.2009.12.022

    Article  Google Scholar 

  24. Chatelain JF, Lalonde JF, Tahan AS (2012) Effect of residual stresses embedded within workpieces on the distortion of parts after machining. Int J Mech 6:43–51

    Google Scholar 

  25. Zhang Q, Mahfouf M, Yates JR, Pinna C, Panoutsos G, Boumaiza S, Greene RJ, Leon L (2011) Modeling and optimal design of machining-induced residual stresses in aluminium alloys using a fast hierarchical multiobjective optimization algorithm. Mater Manuf Process 26:508–520. doi:10.1080/10426914.2010.537421

    Article  Google Scholar 

  26. Denkena B, Leon LD (2008) Milling induced residual stresses in structural parts out of forged aluminum alloys. Int J of Machining and Machinability of Materials 4:335–344. doi:10.1504/IJMMM.2008.023717

    Article  Google Scholar 

  27. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63:631–653. doi:10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  28. Özel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Tech 35:255–267. doi:10.1007/s00170-006-0720-2

    Article  Google Scholar 

  29. Arrazola PJ, O¨zel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Annals-Manufacturing Technology 62:695–718. doi:10.1007/s00170-006-0720-2

    Article  Google Scholar 

  30. Wyatt JE, Berry JT (2006) A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes. J Mater Process Tech 171:132–140. doi:10.1016/j.jmatprotec.2005.06.067

    Article  Google Scholar 

  31. Rao B, Shin YC (2001) Analysis on high-speed face-milling of 7075-T6 aluminum using carbide and diamond cutters. Int J Mach Tools Manuf 41:1763–1781. doi:10.1016/S0890-6955(01)00033-5

    Article  Google Scholar 

  32. Díaz F, Mammana C, Guidobono A (2012) Evaluation of residual stresses induced by high speed milling using an indentation method. Modern Mechanical Engineering 2:143–150. doi:10.4236/mme.2012.24019

    Article  Google Scholar 

  33. Tang ZT, Liu ZQ, Pan YZ, Wan Y, Ai X (2009) The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J Mater Process Tech 209:4502–4508. doi:10.1016/j.jmatprotec.2008.10.034

    Article  Google Scholar 

  34. Chatelain JF, Lalonde JF, TAHAN AS (2011) A Comparison of the Distortion of Machined Parts Resulting From Residual Stresses Within Workpieces. In: Proceedings of the 4th International Conference on Manufacturing Engineering. Quality and Production Systems, Barcelona, Spain, pp 79–84

    Google Scholar 

  35. Huang XM, Sun J, Li JF (2015) Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation. Int J Adv Manuf Technol 77:1035–1041. doi:10.1007/s00170-014-6533-9

    Article  Google Scholar 

  36. ZHang Z, Li L, Yang YF, He N, Zhao W (2014) Prediction and measurement of machining distortion in aluminium alloy 7085. Adv Mat Res 996:640–645. doi:10.4028/www.scientific.net/AMR.996.640

    Google Scholar 

  37. Yang Y, Li M, Li KR (2014) Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component. Int J Adv Manuf Technol 70:1803–1811. doi:10.1007/s00170-013-5431-x

    Article  Google Scholar 

  38. Huang XM, Sun J, Li JF (2015) Effect of initial residual stress and machining-induced residual stress on the deformation of aluminium alloy plate. Journal of Mechanical Engineering 612:131–137. doi:10.5545/sv-jme.2014.1897

    Google Scholar 

  39. Ma Y, Liu S, Feng PF, Yu DW (2015) Finite element analysis of residual stresses and thin plate distortion after face milling. Proceedings of 2015 12th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, pp 67–71

    Google Scholar 

  40. Schulze V, Arrazola P, Zanger F, Osterried J (2013) Simulation of distortion due to machining of thin-walled. In: Preceedings of the 14th CIRP Conference on Modeling of Machining Operations., pp 845–50. doi:10.1016/j.procir.2013.06.063

    Google Scholar 

  41. Keleshian N, Kyser R, Rodriquez J (2011) On the distortion and warpage of 7249 aluminum alloy after quenching and machining. J Mater Eng Perform 20:1230–1234. doi:10.1007/s11665-010-9756-4

    Article  Google Scholar 

  42. Denkena B, León-García L, Köhler J (2006) Influence of high performance cutting operations on the residual stresses of aluminum structural workpieces. In: Proceedings of the 25th International Congress of the aeronautical sciences, Metz, France

  43. Jiang XH, Li BZ, Yang JG (2013) Zuo XY. Effects of tool diameters on the residual stress and distortion induced by milling of thin-walled part Int J Adv Manuf Technol 68:175–186. doi:10.1007/s00170-012-4717-8

    Google Scholar 

  44. Mei ZY, Wang YQ, Saleem A (2011) Distortion analysis of arc shaped workpiece in NC machining. Proceedings of the World Congress on Engineering, London, U.K, pp 2319–2324

    Google Scholar 

  45. Sridhar G, Poosa RB (2015) Volume of material removal on distortion in machining thin wall thin floor components. Int J Mech Eng Applications 3(5):86–93. doi:10.11648/j.ijmea.20150305.12

    Article  Google Scholar 

  46. Rai JK, Xirouchakis P (2008) Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components. Int J Mach Tools Manuf 48:629–643. doi:10.1016/j.ijmachtools.2007.11.004

    Article  Google Scholar 

  47. Spence TW, Makhlouf MM (2015) The effect of machining-induced residual stresses on the creep characteristics of aluminum alloys. Mater Sci Eng A 630:125–130. doi:10.16/j.msea.2015.02.020

    Article  Google Scholar 

  48. He N, Wang ZG, Jiang CY, Zhang B (2003) Finite element method analysis and control stratagem for machining deformation of thin-walled components. J Mater Process Technol 139:332–336. doi:10.1016/S0924-0136(03)00550-8

    Article  Google Scholar 

  49. Asante JN (2008) A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system. Int J Adv Manuf Technol 39:578–588. doi:10.1007/s00170-007-1187-5

    Article  Google Scholar 

  50. Wei Y, Wang XW (2007) Computer simulation and experimental study of machining deflection due to original residual stress of aerospace thin-walled parts. Int J Adv Manuf Technol 33:260–265. doi:10.1007/s00170-006-0470-1

    Article  Google Scholar 

  51. Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2012) Methods of measuring residual stresses in components. Mater Des 35:572–588. doi:10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  52. Wang QM, Sun Y (2011) Development and trend of residual stress testing technology. Mechanical and electrical engineering 28(1):12–15

    Google Scholar 

  53. Withers PJ, Turski M, Edwards L, Bouchard PJ, Buttle DJ (2008) Recent advances in residual stress measurement. Int J Pres Ves Pip 85:118–127. doi:10.1016/j.ijpvp.2007.10.007

    Article  Google Scholar 

  54. Ficquet X, Truman CE, Kingston E, Smith DJ (2006) Measurement of residual stress in aluminum alloy aerospace components. Proceedings of 25th International congress of the aeronautical sciences, Germany

    Google Scholar 

  55. Prime MB, DeWald AT (2013) The contour method. Chapter 5. In: Schajer GS (ed) Practical residual stress measurement methods. Wiley-Blackwell, Los Alamos, pp 109–138. http://www.lanl.gov/contour/docs/contourChapterPreprint.pdf

  56. Richter-Trummer V, Koch D, Witte A, Santos JF, Castro PMST (2013) Methodology for prediction of distortion of workpieces manufactured by high speed machining based on an accurate through-the-thickness residual stress determination. Int J Adv Manuf Technol 68:2271–2281. doi:10.1007/s00170-013-4828-X

    Article  Google Scholar 

  57. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: Recent advances[J] CIRP Annals. Manufacturing Technology 60:603–626. doi:10.1016/j.cirp.2011.05.002

    Google Scholar 

  58. Jiang CH, Yang CZ (2013) Internal stress diffraction analysis. Science Press, Beijing, pp 18–20

    Google Scholar 

  59. Mikula P, Paranjpe SK, Paranjpe SK, Schneider R, Teixeira J, Torok G (2003) Measurement of residual stress in materials using neutrons. Proceedings of a technical meeting, Vienna, Austria

    Google Scholar 

  60. Kudryavtsev Y, Kleiman J, Gushcha O, Smilenko V, Brodovy V (2004) Ultrasonic technique and device for residual stress measurement. In: X International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, California, pp 1–7

  61. Wang SH (2005) Basic research on the influence of initial residual stress of thick plates and its influence on milling distortion of aerospace aluminum alloy. Dissertation, Nanjing University of Aeronautics & Astronautics

    Google Scholar 

  62. Dreier S, Denkena B (2014) Determination of residual stresses in plate material by layer removal with machine-integrated measurement. In: New production technologies in aerospace industry - 5th Machining Innovations Conference, 24:103 – 107 doi:10.1016/j.procir.2014.07.137

  63. BI YB, Cheng QL, Dong HY, Ke YL (2009) Machining distortion prediction of aerospace monolithic components. J Zhejiang Univ-sc A 10(5):661–668. doi:10.1631/jzus.A0820392

    Article  Google Scholar 

  64. Liu LB, Sun JF, Chen WY, Sun PF (2015) Study on the machining distortion of aluminum alloy parts induced by forging residual stresses. Proc IMechE Part B: J Engineering Manufacture. doi:10.1177/0954405415583805

  65. Wang SP, Padmanaban S (2004) A new approach for FEM simulation of NC machining processes, AIP Conf Prov., pp 1371–1376. doi:10.1063/1.1766720

    Google Scholar 

  66. Schindler S, Zimmermann M, Aurich JC, Steinmann P (2014) Thermo-elastic deformations of the workpiece when dry turning aluminum alloys—a finite element model to predict thermal effects in the workpiece. CIRP J Manuf Sci Technol 7:233–245. doi:10.1016/j.cirpj.2014.04.006

    Article  Google Scholar 

  67. Cerutti X, Mocellin K (2014) Parallel finite element tool to predict distortion induced by initial residual stresses during machining of aeronautical parts. Int J Mater Form. doi:10.1007/s12289-014-1164-0

    Google Scholar 

  68. D’Alvise L, Chantzis D, Schoinochoritis B, Salonitis K (2015). Modelling of part distortion due to residual stresses relaxation: an aeronautical case study, In: Proceedings of the 15th CIRP Conference on Modelling of Machining Operations, 31:447–452 doi:10.1016/j.procir.2015.03.069

  69. Jayanti S, Ren D, Erickson E, Usui S, Marusich T, Marusich K, Elanvogan H (2013) Predictive modeling for tool deflection and part distortion of large machined components, In: Proceedings of the 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering, pp:37–42 doi:10.1016/j.procir.2013.09.008

  70. Marusich TD, Usui S, Terauds K, Becker BV (2008) Finite element modelling of part distortion. In: In: Proceedings of Intelligent Robotics and Applications, First International Conference, Wuhan, China, October., p 2008. doi:10.1007/978-3-540-88518-4_36

  71. Wu Q, Li DP, Ren L, Mo S (2015) Detecting milling deformation in 7075 aluminum alloy thin-walled plates using finite difference method Int J Adv Manuf Technol, published online doi:10.1007/s00170-015-8012-3

  72. Jiang ZL, Liu YM, Li L, Shao WX (2014) A novel prediction model for thin plate deflections considering milling residual stresses 74:37–45 doi:10.1007/s00170-014-5952-y

  73. Nervi S, SzabóB A, Keith A (2009) Young, prediction of distortion of airframe components made from aluminum plates. AIAA J 7:1635–1641. doi:10.2514/1.37233

    Article  Google Scholar 

  74. Bai WJ (2008) Research on the theory and methods to predict the machining distortion of thin wall parts in precision milling. Dissertation, Zhejiang University

    Google Scholar 

  75. Lu Y, Fan SP, Bao YJ (2012) Experimental study on the distortion by milling force in the high speed milling of aerospace aluminum alloy thin wall parts. Journal of Shenyang University 24(3):27–34

    Google Scholar 

  76. Zhang SY, Wu YX, Gong H (2012) A modeling of residual stress in stretched aluminum alloy plate. J Mater Process Technol 212:2463–2473. doi:10.1016/j.jmatprotec.2012.06.019

    Article  Google Scholar 

  77. Wang QC (2003) Reasearch on the elimination and evaluation technology of residual stress of aviation aluminum alloy. Dissertation, Zhejiang University

    Google Scholar 

  78. Robinson JS, Hossain S, Truman CE, Oliver EC, Hughes DJ, Fox ME (2008) Influence of cold compression on the residual stresses in 7449 forging. Adv X-ray Anal 52:667–674

    Google Scholar 

  79. Kwofie S (2009) Plasticity model for simulation, description and evaluation of vibratory stress relief. Mater Sci Eng A, 512(l-2):154–161. doi:10.1016/j.msea.2009.03.014

  80. Wang JS, Hsieh CC, Lin CM (2014) The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy. Mater Sci Eng A 605:98–107. doi:10.1016/j.msea.2014.03.037

    Article  Google Scholar 

  81. Sridhar G, Ramesh BP (2015) Effect of a milling cutter diameter on distortion due to the machining of thin wall thin floor components. Advances in Production Engineering & Management 10(3):140–152. doi:10.14743/apem2015.3.198

    Article  Google Scholar 

  82. Jiang XH, Li BZ, Yang JG, Zuo XY, Li K (2012) An approach for analyzing and controlling residual stress generation during high-speed circular milling. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4421-8

    Google Scholar 

  83. Chen WF, Xue JB, Tang DB (2009) Deformation prediction and error compensation in multilayer milling processes for thin-walled parts. Int J Mach Tools Manuf 49:859–864. doi:10.1016/j.ijmachtools.2009.05.006

    Article  Google Scholar 

  84. Marusich TD, Usui S, Lankalapalli S, Saini N, Zamorano L, Grevstad A (2006) Residual stress prediction for part distortion modeling. SAE Technical Paper. doi:10.4271/2006-01-3171

    Google Scholar 

  85. Wan XJ, Hua L, Wang XF (2011) An error control approach to tool path adjustment conforming to the deformation of thin-walled workpiece. Int J Mach Tools Manuf 51:221–229. doi:10.1016/j.ijmachtools.2010.11.007

    Article  Google Scholar 

  86. Urresti I, Nikov S, Brown P, Arrazola PJ (2009) Aerospace gas turbine disc distortion modelling: machining sequence optimization. Proceedings of the 12th CIRP Conference on Modeling Machining operations, San Sebastian, Spain

    Google Scholar 

  87. Zhang Z, Li L, Yang YF, He N (2014) Machining distortion minimization for the manufacturing of aeronautical structure 73:1765–1773 doi:10.1007/s00170-014-5994-1

  88. Li BZ, Jiang XH, Yang JG, Liang SY (2015) Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part. J Mater Process Technol 216:223–233. doi:10.1016/j.jmatprotec.2014.09.016

    Article  Google Scholar 

  89. Watton JD (2010) Computational modeling and optimization of bulk residual stress in monolithic aluminum die forgings. Product Manufacturing, Alcoa Technical Center http://sem-proceedings.com

  90. Fribourg G (2010) Precipitation and plasticity couplings in a 7xxx aluminium alloy: application to thermo-mechanical treatments for distortion correction of aerospace component. HAL https://tel.archives-ouvertes.fr/tel-00502536/document

  91. Mylonas G, Heckenberger U, Lampeas G (2010) Investigation on shot-peening induced residual stress field. Int J Microstructure and Materials Properties 5(4/5):471–480. doi:10.1504/IJMMP.2010.037623

    Article  Google Scholar 

  92. Munthe S, Munthe M (2011) The method of corrective shot peening: how to correct the distortion on the machined parts. In: Proceedings of the 11th International conference on shot peening. South Bend, Indiana, USA

    Google Scholar 

  93. Coratella AS, Sticchi M, Toparli MB, Fitzpatrick ME, Kashaev N (2015) Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples. Surf Coat Technol 273:39–49. doi:10.1016/j.surfcoat.2015.03.026

    Article  Google Scholar 

  94. Gariépy F, Bridier M, Hoseini (2013) Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351, Surf Coat Technol 219:15–30 doi:10.1016/j.surfcoat.2012.12.046

  95. Ocana JL, Correa C, García-Beltrán A (2015) Laser Shock Processing of thin Al2024-T351 plates for induction of through-thickness compressive residual stresses fields. J Mater Process Technol 223:8–15. doi:10.1016/j.jmatprotec.2015.03.030

    Article  Google Scholar 

  96. Song JH, Zhang Y, Lee J (2013) A numerical approach to shape correction of stamped products using laser forming techniques. Key Eng Mater 535–536:239–242. doi:10.4028/www.scientific.net/KEM.535-536.239

    Article  Google Scholar 

  97. Dearden GS, Edwardson P, Abed E, Bartkowiak KK, Watkins G (2006) Correction of distortion and design shape in aluminum structures using laser forming. In: Proceedings of the 25th international congress on applications of laser & electro-optics, laser institute of America, vol 99., pp 813–817

    Google Scholar 

  98. Volk G, Leacock A, Brown D (2013) Profile correction of a stretch formed aluminium alloy during artificial ageing. Key Eng Mater 549:213–219. doi:10.4028/www.scientific.net/KEM.549.213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jg., Wang, Sq. Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances. Int J Adv Manuf Technol 89, 997–1012 (2017). https://doi.org/10.1007/s00170-016-9066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9066-6

Keywords

Navigation