Skip to main content
Log in

A review on resistance spot welding of aluminum alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a review on the resistance spot welding (RSW) of Al/Al alloys, Al alloys/steel, Al/Mg alloys, and Al/Ti alloys, with focus on structure, properties, and performance relationships. It also includes weld bonding, effect of welding parameters on joint quality, main metallurgical defects in Al spot welds, and electrode degradation. The high contact resistance, induced by the presence of oxide layer on the surface of Al alloys, and the need for application of high welding current during RSW of Al alloys result in rapid electrode tip wear and inconsistency in weld quality. Studies have shown that cleaning the oxide layer, sliding of a few microns between sheets, enhancing the electrode force, and the application of a low-current pre-heating can significantly reduce the contact resistance and improve joint quality. For Al/steel dissimilar RSW, the technique of resistance element welding, the use of optimized electrode morphology, the technique of RSW with cover plates, and the use of interlayers such as Al-Mg, AlSi12, and AlCu28 alloys were found to suppress the formation of brittle intermetallic compounds (IMC) and improve the joint quality. The employment of pure Ni foil, Au-coated Ni foil, Sn-coated steel, and Zn-coated steel interlayers was also found to restrict the formation of brittle IMCs during RSW of Al/Mg alloys. Furthermore, the techniques of RSW with cover plates and RSW under the influence of electromagnetic stirring effect were found to improve the weldability of Al/Ti dissimilar alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim HC, Wallington TJ (2013) Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization. Environ Sci Technol 47(12):6089–6097

    Article  Google Scholar 

  2. Humpenöder F, Popp A, Stevanovic M, Müller C, Bodirsky BL, Bonsch M, Dietrich JP, Lotze-Campen H, Weindl I, Biewald A (2015) Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation? Environ Sci Technol

  3. Modaresi R, Pauliuk S, Løvik AN, Müller DB (2014) Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ Sci Technol 48(18):10776–10784

    Article  Google Scholar 

  4. Das S (2014) Life cycle energy and environmental assessment of aluminum-intensive vehicle design. SAE Int J Mater Manuf 7(2014-01-1004):588–595

    Article  Google Scholar 

  5. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9-10):851–865

    Article  Google Scholar 

  6. Medraj M, Parvez A (2007) Analyse the importance of magnesium-aluminium-strontium alloys for more fuel-efficient automobiles. Automotive:45–47

  7. Association EA (2008) Aluminium in cars. European Aluminium Association

  8. Sun M, Niknejad S, Gao H, Wu L, Zhou Y (2016) Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Mater Des 91:331–339

    Google Scholar 

  9. Ambroziak A, Korzeniowski M (2010) Using resistance spot welding for joining aluminium elements in automotive industry. Arch Civ Mech Eng 10(1):5–13

    Article  Google Scholar 

  10. Automotive Trends in Aluminum, The European perspective: part one. http://www.totalmateria.com/Article135.htm Accessed 12 Dec 2015

  11. Rodriguez R, Jordon J, Allison P, Rushing T, Garcia L (2015) Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Mater Des 83:60–65

    Google Scholar 

  12. Liu J, Rao Z, Liao S, Wang P-C (2014) Modeling of transport phenomena and solidification cracking in laser spot bead-on-plate welding of AA6063-T6 alloy. Part I—the mathematical model. Int J Adv Manuf Technol 73(9-12):1705–1716

    Article  Google Scholar 

  13. Qiu R, Zhang Z, Zhang K, Shi H, Ding G (2011) Influence of welding parameters on the tensile shear strength of aluminum alloy joint welded by resistance spot welding. J Mater Eng Perform 20(3):355–358

    Article  Google Scholar 

  14. Karimi M, Sedighi M, Afshari D (2015) Thermal contact conductance effect in modeling of resistance spot welding process of aluminum alloy 6061-T6. Int J Adv Manuf Technol 77(5-8):885–895

    Article  Google Scholar 

  15. Han L, Thornton M, Shergold M (2010) A comparison of the mechanical behaviour of self-piercing riveted and resistance spot welded aluminium sheets for the automotive industry. Mater Des 31(3):1457–1467

    Article  Google Scholar 

  16. Han L, Thornton M, Li D, Shergold M (2011) Effect of governing metal thickness and stack orientation on weld quality and mechanical behaviour of resistance spot welding of AA5754 aluminium. Mater Des 32(4):2107–2114

    Article  Google Scholar 

  17. Zhang Y, Li Y, Luo Z, Yuan T, Bi J, Wang ZM, Wang ZP, Chao YJ (2016) Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding. Mater Des 106:235–246

    Google Scholar 

  18. Shi Y, Guo H (2013) Fatigue performance and fatigue damage parameter estimation of spot welded joints of aluminium alloys 6111‐T4 and 5754. Fatigue Fract Eng Mater Struct 36(10):1081–1090

    Article  Google Scholar 

  19. Wu S-n, Ghaffari B, Hetrick E, Li M, Z-h J, Liu Q (2014) Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy. Trans Nonferrous Metals Soc China 24(12):3879–3885

    Article  Google Scholar 

  20. Miller W, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280(1):37–49

    Article  Google Scholar 

  21. Feng Y, Luo Z, Li Y, Ling Z (2016) A novel method for resistance plug welding of 7075 aluminum alloy. Mater Manuf Process:1–7. doi:10.1080/10426914.2015.1103853

  22. Hassanifard S, Zehsaz M, Tohgo K (2011) The effects of electrode force on the mechanical behaviour of resistance spot‐welded 5083‐O aluminium alloy joints. Strain 47(s1):e196–e204

    Article  Google Scholar 

  23. Hao M, Osman K, Boomer D, Newton C (1996) Developments in characterization of resistance spot welding of aluminum. Weld J Incl Weld Res Suppl 75(1):1–4

    Google Scholar 

  24. Cho Y, Hu S, Li W (2003) Resistance spot welding of aluminium and steel: a comparative experimental study. Proc Inst Mech Eng B J Eng Manuf 217(10):1355–1363

    Article  Google Scholar 

  25. Luo Z, Ao S, Chao YJ, Cui X, Li Y, Lin Y (2015) Application of pre-heating to improve the consistency and quality in AA5052 resistance spot welding. J Mater Eng Perform 24(10):3881–3891

    Article  Google Scholar 

  26. Cui LH, Qiu RF, Shi HX, Zhu YM (2014) Resistance spot welding between copper coated steel and aluminum alloy. Appl Mech Mater 675:19–22

    Article  Google Scholar 

  27. Florea R, Solanki K, Bammann D, Baird J, Jordon J, Castanier M (2012) Resistance spot welding of 6061-T6 aluminum: failure loads and deformation. Mater Des 34:624–630

    Article  Google Scholar 

  28. 2015 North American light vehicle aluminum content study: executive summary http://www.drivealuminum.org/research-resources/PDF/Research/2014/2014-ducker-report. Accessed 12 Dec 2015

  29. Wang J, Wang H-P, Lu F, Carlson BE, Sigler DR (2015) Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model. Int J Heat Mass Transf 89:1061–1072

    Article  Google Scholar 

  30. Li Y, Luo Z, Yan FY, Duan R, Yao Q (2014) Effect of external magnetic field on resistance spot welds of aluminum alloy. Mater Des 56:1025–1033

    Article  Google Scholar 

  31. Fukumoto S, Lum I, Biro E, Boomer D, Zhou Y (2003) Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182. Weld J 82(11):307-S

    Google Scholar 

  32. Bi J, Song J, Wei Q, Zhang Y, Li Y, Luo Z (2016) Characteristics of shunting in resistance spot welding for dissimilar unequal-thickness aluminum alloys under large thickness ratio. Mater Des 101:226–235

    Google Scholar 

  33. Li YB, Wei ZY, Li YT, Shen Q, Lin ZQ (2013) Effects of cone angle of truncated electrode on heat and mass transfer in resistance spot welding. Int J Heat Mass Transf 65:400–408

    Article  Google Scholar 

  34. Hamidinejad SM, Kolahan F, Kokabi AH (2012) The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing. Mater Des 34:759–767

    Article  Google Scholar 

  35. Hayat F (2011) The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials. Mater Des 32(4):2476–2484

    Article  Google Scholar 

  36. Florea R, Bammann D, Yeldell A, Solanki K, Hammi Y (2013) Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy. Mater Des 45:456–465

    Article  Google Scholar 

  37. Pouranvari M, Marashi S (2013) Critical review of automotive steels spot welding: process, structure and properties. Sci Technol Weld Join 18(5):361–403

    Article  Google Scholar 

  38. Manladan S, Yusof F, Ramesh S, Fadzil M (2016) A review on resistance spot welding of magnesium alloys. Int J Adv Manuf Technol:1-21. doi: 10.1007/s00170-015-8258-9

  39. Satonaka S, Iwamoto C, Murakami GI, Matsumoto Y (2012) Resistance spot welding of magnesium alloy sheets with cover plates. Weld World 56(7-8):44–50

    Article  Google Scholar 

  40. Al Naimi IK, Al Saadi MH, Daws KM, Bay N (2015) Influence of surface pretreatment in resistance spot welding of aluminum AA1050. Prod Manuf Res 3(1):185–200

    Google Scholar 

  41. Florea R, Hubbard C, Solanki K, Bammann D, Whittington W, Marin E (2012) Quantifying residual stresses in resistance spot welding of 6061-T6 aluminum alloy sheets via neutron diffraction measurements. J Mater Process Technol 212(11):2358–2370

    Article  Google Scholar 

  42. Rashid M (2011) Some tribological influences on the electrode-worksheet interface during resistance spot welding of aluminum alloys. J Mater Eng Perform 20(3):456–462

    Article  Google Scholar 

  43. Patil R, Anurag Tilak C, Srivastava V, De A (2011) Minimising electrode wear in resistance spot welding of aluminium alloys. Sci Technol Weld Join 16(6):509–513

    Article  Google Scholar 

  44. De A (2002) Finite element modelling of resistance spot welding of aluminium with spherical tip electrodes. Sci Technol Weld Join 7(2):119–124

    Article  Google Scholar 

  45. Cho Y, Li W, Hu S (2006) Design of experiment analysis and weld lobe estimation for aluminum resistance spot welding. Weld J 85(3):45–51

    Google Scholar 

  46. Wei PS, Wu TH, Chen LJ (2013) Joint quality affected by electrode contact condition during resistance spot welding. IEEE Trans Compon Pack Manuf Technol 3(12):2164–2173

    Article  Google Scholar 

  47. Liu L, Feng J, Zhou Y (2010) 18 - Resistance spot welding of magnesium alloys. In: Liu L (ed) Welding and joining of magnesium alloys. Woodhead Publishing, pp 351–367e

  48. Qiu RF, Satonaka S, Iwamoto C (2009) Mechanical properties and microstructures of magnesium alloy AZ31B joint fabricated by resistance spot welding with cover plates. Sci Technol Weld Join 14(8):691–697

    Article  Google Scholar 

  49. Charde N, Yusof F, Rajkumar R (2014) Material characterizations of mild steels, stainless steels, and both steel mixed joints under resistance spot welding (2-mm sheets). Int J Adv Manuf Technol 75(1-4):373–384

    Article  Google Scholar 

  50. Wang Y, Mo Z, Feng J, Zhang Z (2007) Effect of welding time on microstructure and tensile shear load in resistance spot welded joints of AZ31 Mg alloy. Sci Technol Weld Join 12(8):671–676

    Article  Google Scholar 

  51. Zhang H, Senkara J (2011) Resistance welding: fundamentals and applications. CRC Press

  52. Williams N, Parker J (2004) Review of resistance spot welding of steel sheets part 1 modelling and control of weld nugget formation. Int Mater Rev 49(2):45–75

    Article  Google Scholar 

  53. James P, Chandler H, Evans J, Wen J, Browne D, Newton C (1997) The effect of mechanical loading on the contact resistance of coated aluminium. Mater Sci Eng A 230(1):194–201

    Article  Google Scholar 

  54. Crinon E, Evans J (1998) The effect of surface roughness, oxide film thickness and interfacial sliding on the electrical contact resistance of aluminium. Mater Sci Eng A 242(1):121–128

    Article  Google Scholar 

  55. Rashid M, Medley J, Zhou Y (2011) Nugget formation and growth during resistance spot welding of aluminium alloy 5182. Can Metall Q 50(1):61–71

    Article  Google Scholar 

  56. Han L, Thornton M, Boomer D, Shergold M (2010) Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding. J Mater Process Technol 210(8):1076–1082

    Article  Google Scholar 

  57. Rashid M, Medley J, Zhou Y (2009) Electrode worksheet interface behaviour during resistance spot welding of Al alloy 5182. Sci Technol Weld Join 14(4):295–304

    Article  Google Scholar 

  58. Alliance RWM (2003) Resistance welding manual. RWMA, Philadelphia

    Google Scholar 

  59. Rashid M, Fukumoto S, Medley J, Villafuerte J, Zhou Y (2007) Influence of lubricants on electrode life in resistance spot welding of aluminum alloys. Weld J 86(3):62

    Google Scholar 

  60. Khan MF, Dwivedi D, Sharma S (2012) Development of response surface model for tensile shear strength of weld-bonds of aluminium alloy 6061 T651. Mater Des 34:673–678

    Article  Google Scholar 

  61. Zhang W, Sun D, Han L, Gao W, Qiu X (2011) Characterization of intermetallic compounds in dissimilar material resistance spot welded joint of high strength steel and aluminum alloy. Isij Int 51(11):1870–1877

    Article  Google Scholar 

  62. Zhang W, Qiu X, Sun D, Han L (2011) Effects of resistance spot welding parameters on microstructures and mechanical properties of dissimilar material joints of galvanised high strength steel and aluminium alloy. Sci Technol Weld Join 16(2):153–161

    Article  Google Scholar 

  63. Pereira A, Ferreira J, Loureiro A, Costa J, Bártolo P (2010) Effect of process parameters on the strength of resistance spot welds in 6082-T6 aluminium alloy. Mater Des 31(5):2454–2463

    Article  Google Scholar 

  64. Zhang W, Sun D, Han L, Liu D (2014) Interfacial microstructure and mechanical property of resistance spot welded joint of high strength steel and aluminium alloy with 4047 AlSi12 interlayer. Mater Des 57:186–194

    Article  Google Scholar 

  65. Faseeulla Khan M, Dwivedi D (2012) Mechanical and metallurgical behavior of weld-bonds of 6061 aluminum alloy. Mater Manuf Process 27(6):670–675

    Article  Google Scholar 

  66. Zhang W, Sun D, Han L, Li Y (2015) Optimised design of electrode morphology for novel dissimilar resistance spot welding of aluminium alloy and galvanised high strength steel. Mater Des 85:461–470

    Google Scholar 

  67. Khan MF, Sharma G, Dwivedi D (2015) Weld-bonding of 6061 aluminium alloy. Int J Adv Manuf Technol 78(5-8):863–873

    Article  Google Scholar 

  68. Li Y, Zhang Y, Bi J, Luo Z (2015) Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding. Mater Des 83:577–586

    Google Scholar 

  69. Li Y, Zhang Y, Luo Z (2015) Microstructure and mechanical properties of Al/Ti joints welded by resistance spot welding. Sci Technol Weld Join 20(5):385–394

    Article  Google Scholar 

  70. Luo Z, Yan F, Li Y, Bai Y, Yao Q, Tan H (2015) Numerical and experimental study on nugget formation process in resistance spot welding of aluminum alloy. Trans Tianjin Univ 21:135–139

    Article  Google Scholar 

  71. Li Y, Yan FY, Luo Z, Chao YJ, Ao SS, Cui XT (2015) Weld growth mechanisms and failure behavior of three-sheet resistance spot welds made of 5052 aluminum alloy. J Mater Eng Perform 24(6):2546–2555

    Article  Google Scholar 

  72. Wang Y, Feng J, Zhang Z (2006) Microstructure characteristics of resistance spot welds of AZ31 Mg alloy. Sci Technol Weld Join 11(5):555–560

    Article  Google Scholar 

  73. Afshari D, Sedighi M, Barsoum Z, Peng RL (2012) An approach in prediction of failure in resistance spot welded aluminum 6061-T6 under quasi-static tensile test. Proc Inst Mech Eng B J Eng Manuf 226(6):1026–1032

    Article  Google Scholar 

  74. Xiao L, Liu L, Esmaeili S, Zhou Y (2012) Microstructure refinement after the addition of titanium particles in AZ31 magnesium alloy resistance spot welds. Metall Mater Trans A 43(2):598–609

    Article  Google Scholar 

  75. Xiao L, Liu L, Zhou Y, Esmaeili S (2010) Resistance-spot-welded AZ31 magnesium alloys: part I. Dependence of fusion zone microstructures on second-phase particles. Metall Mater Trans A 41(6):1511–1522

    Article  Google Scholar 

  76. Liu L, Xiao L, Feng JC, Tian YH, Zhou SQ, Zhou Y (2010) Resistance spot welded AZ31 magnesium alloys, part II: effects of welding current on microstructure and mechanical properties. Metall Mater Trans A 41a(10):2642–2650

    Article  Google Scholar 

  77. Kang JD, McDermid JR, Bruhis M (2013) Determination of the constitutive behaviour of AA6022-T4 aluminium alloy spot welds at large strains. Mater Sci Eng a-Struct 567:95–100

    Article  Google Scholar 

  78. Hayat F (2012) Effect of aging treatment on the microstructure and mechanical properties of the similar and dissimilar 6061-T6/7075-T651 RSW joints. Mater Sci Eng A 556:834–843

    Article  Google Scholar 

  79. Babu NK, Brauser S, Rethmeier M, Cross C (2012) Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy. Mater Sci Eng A 549:149–156

    Article  Google Scholar 

  80. Alizadeh-Sh M, Marashi S, Pouranvari M (2014) Microstructure-properties relationships in martensitic stainless steel resistance spot welds. Sci Technol Weld Join 19(7):595–602

    Article  Google Scholar 

  81. Yao Q, Luo Z, Li Y, Yan F, Duan R (2014) Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Mater Des 63:200–207

    Article  Google Scholar 

  82. Senkara J, Zhang H, Hu S (2004) Expulsion prediction in resistance spot welding. Weld J NY 83(4):123-S

    Google Scholar 

  83. Han L, Thornton M, Boomer D, Shergold M (2011) A correlation study of mechanical strength of resistance spot welding of AA5754 aluminium alloy. J Mater Process Technol 211(3):513–521

    Article  Google Scholar 

  84. Radakovic D, Tumuluru M (2008) Predicting resistance spot weld failure modes in shear tension tests of advanced high-strength automotive steels. Weld J 87(4):96

    Google Scholar 

  85. Gean A, Westgate S, Kucza J, Ehrstrom J (1999) Static and fatigue behavior of spot-welded 5182-0 aluminum alloy sheet. Weld J 78:80-s

    Google Scholar 

  86. Sun X, Stephens EV, Davies RW, Khaleel M, Spinella DJ (2004) Effects of fusion zone size on failure modes and static strength of aluminum resistance spot welds. Weld J 83(11):308

    Google Scholar 

  87. Behravesh SB, Jahed H, Lambert S (2011) Characterization of magnesium spot welds under tensile and cyclic loadings. Mater Des 32(10):4890–4900

    Article  Google Scholar 

  88. Kang J, Chen Y, Sigler D, Carlson B, Wilkinson DS (2015) Fatigue behavior of dissimilar aluminum alloy spot welds. Procedia Eng 114:149–156

    Article  Google Scholar 

  89. Pereira A, Ferreira J, Antunes F, Bártolo P (2014) Assessment of the fatigue life of aluminium spot-welded and weld-bonded joints. J Adhes Sci Technol 28(14-15):1432–1450

    Article  Google Scholar 

  90. Xiao L, Liu L, Chen DL, Esmaeili S, Zhou Y (2011) Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy. Mater Sci Eng A 529:81–87

    Article  Google Scholar 

  91. Patel VK, Bhole SD, Chen DL (2014) Fatigue life estimation of ultrasonic spot welded Mg alloy joints. Mater Des 62:124–132

    Article  Google Scholar 

  92. Behravesh SB, Jahed H, Lambert S (2014) Fatigue characterization and modeling of AZ31B magnesium alloy spot-welds. Int J Fatigue 64:1–13

    Article  Google Scholar 

  93. Hassanifard S, Zehsaz M (2010) The effects of residual stresses on the fatigue life of 5083-O aluminum alloy spot welded joints. Procedia Eng 2(1):1077–1085

    Article  Google Scholar 

  94. Lin F, Li TP, Yu Q, Sun LL, Meng QS Diffusion bonding between AZ91 magnesium alloy and 7075 aluminum alloy. In: Advanced Materials Research, 2011. Trans Tech Publ, pp 800–803

  95. Balasubramanian V, Ravisankar V, Reddy GM (2008) Effect of postweld aging treatment on fatigue behavior of pulsed current welded AA7075 aluminum alloy joints. J Mater Eng Perform 17(2):224–233

    Article  Google Scholar 

  96. Afshari D, Sedighi M, Karimi M, Barsoum Z (2013) On residual stresses in resistance spot-welded aluminum alloy 6061-T6: experimental and numerical analysis. J Mater Eng Perform 22(12):3612–3619

    Article  Google Scholar 

  97. Nodeh IR, Serajzadeh S, Kokabi AH (2008) Simulation of welding residual stresses in resistance spot welding, FE modeling and X-ray verification. J Mater Process Technol 205(1):60–69

    Article  Google Scholar 

  98. Long X, Khanna SK (2005) Residual stresses in spot welded new generation aluminium alloys part B–finite element simulation of residual stresses in a spot weld in 5754 aluminium alloy. Sci Technol Weld Join 10(1):88–94

    Article  Google Scholar 

  99. Afshari D, Sedighi M, Barsoum Z (2012) Residual stress in resistance spot welded aluminum alloy sheets. i-Manager’s J Mech Eng 2(4):6

    Google Scholar 

  100. Khanna SK, Long X, Porter WD, Wang H, Liu C, Radovic M, Lara-Curzio E (2005) Residual stresses in spot welded new generation aluminium alloys part A–thermophysical and thermomechanical properties of 6111 and 5754 aluminium alloys. Sci Technol Weld Join 10(1):82–87

    Article  Google Scholar 

  101. Emre HE, Kaçar R (2015) Development of weld lobe for resistance spot-welded TRIP800 steel and evaluation of fracture mode of its weldment. Int J Adv Manuf Technol:1–11

  102. Jagadeesha T, Jothi TS (2015) Studies on the influence of process parameters on the AISI 316L resistance spot-welded specimens. Int J Adv Manuf Technol:1–16

  103. Ashtiani HRR, Zarandooz R (2015) Microstructural and mechanical properties of resistance spot weld of Inconel 625 supper alloy. Int J Adv Manuf Technol:1–13

  104. Lang B, Sun D, Li G, Qin X (2008) Effects of welding parameters on microstructure and mechanical properties of resistance spot welded magnesium alloy joints. Sci Technol Weld Join 13(8):698–704

    Article  Google Scholar 

  105. Hou LL, Qiu RF, Shi HX, Guo JQ (2014) Properties of resistance spot welded joint between mild steel and aluminum alloy with an interlayer of AlCu28. Appl Mech Mater 675:15–18

    Article  Google Scholar 

  106. Qiu RF, Shi HX, Yu H, Zhang KK, Tu YM, Satonaka S (2010) Effects of electrode force on the characteristic of magnesium alloy joint welded by resistance spot welding with cover plates. Mater Manuf Process 25(11):1304–1308

    Article  Google Scholar 

  107. Luo H, Hao C, Zhang J, Gan Z, Chen H, Zhang H (2011) Characteristics of resistance welding magnesium alloys AZ31 and AZ91. Weld J 90:249–257

    Google Scholar 

  108. Cao X, Jahazi M, Immarigeon J, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171(2):188–204

    Article  Google Scholar 

  109. Qiu R, Iwamoto C, Satonaka S (2009) The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding. Mater Charact 60(2):156–159

    Article  Google Scholar 

  110. Qiu R, Iwamoto C, Satonaka S (2010) Interfacial reaction layer in resistance spot welded joint between aluminium alloy and austenitic stainless steel. Mater Sci Technol 26(2):243–246

    Article  Google Scholar 

  111. Qiu R, Satonaka S, Iwamoto C (2009) Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels. Mater Des 30(9):3686–3689

    Article  Google Scholar 

  112. Qiu R, Iwamoto C, Satonaka S (2009) Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate. J Mater Process Technol 209(8):4186–4193

    Article  Google Scholar 

  113. Qiu R, Shi H, Zhang K, Tu Y, Iwamoto C, Satonaka S (2010) Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding. Mater Charact 61(7):684–688

    Article  Google Scholar 

  114. Arghavani M, Movahedi M, Kokabi A (2016) Role of zinc layer in resistance spot welding of aluminium to steel. Mater Des 102:106–114

    Google Scholar 

  115. Sun X, Stephens EV, Khaleel MA, Shao H, Kimchi M (2004) Resistance spot welding of aluminum alloy to steel with transition material-from process to performance—part I: experimental study. Weld J 83:188-S

    Google Scholar 

  116. Oikawa H, Ohmiya S, Yoshimura T, Saitoh T (1999) Resistance spot welding of steel and aluminium sheet using insert metal sheet. Sci Technol Weld Join 4(2):80–88

    Article  Google Scholar 

  117. Oikawa H, Saitoh T (1999) Resistance spot welding of steel and aluminium sheet using insert metal. Weld Int 13(5):349–359

    Article  Google Scholar 

  118. Watanabe T, Yanagisawa A, Konu Ma S, Doi Y (2006) Resistance spot welding of mild steel to Al-Mg alloy. Weld Int 20(4):290–294

    Article  Google Scholar 

  119. Ibrahim I, Ito R, Kakiuchi T, Uematsu Y, Yun K, Matsuda C (2015) Fatigue behaviour of Al/steel dissimilar resistance spot welds fabricated using Al-Mg interlayer. Sci Technol Weld Join:1362171815Y. 0000000086

  120. Qiu R, Wang N, Shi H, Cui L, Hou L, Zhang K (2015) Joining steel to aluminum alloy by resistance spot welding with a rivet. Int J Mater Res 106(1):60–65

    Article  Google Scholar 

  121. Ling Z, Li Y, Luo Z, Feng Y, Wang Z (2016) Resistance element welding of 6061 aluminum alloy to uncoated 22MnMoB boron steel. Mater Manuf Process (just-accepted)

  122. Luo AA (2013) 8 - applications: aerospace, automotive and other structural applications of magnesium. In: Pekguleryuz MO, Kainer KU, Kaya AA (eds) Fundamentals of magnesium alloy metallurgy. Woodhead Publishing, pp 266–316

  123. Palanivel S, Nelaturu P, Glass B, Mishra R (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 65:934–952

    Article  Google Scholar 

  124. Liu L, Ren D, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials 7(5):3735–3757

    Article  Google Scholar 

  125. Luo Y, Li JL (2014) Analysis of nugget formation during resistance spot welding on dissimilar metal sheets of aluminum and magnesium alloys. Metall Mater Trans A 45a(11):5107–5113

    Article  Google Scholar 

  126. Zhang Y, Luo Z, Li Y, Liu Z, Huang Z (2015) Microstructure characterization and tensile properties of Mg/Al dissimilar joints manufactured by thermo-compensated resistance spot welding with Zn interlayer. Mater Des 75:166–173

    Article  Google Scholar 

  127. Penner P, Liu L, Gerlich A, Zhou Y (2013) Feasibility study of resistance spot welding of dissimilar Al/Mg combinations with Ni based interlayers. Sci Technol Weld Join 18(7):541–550

    Article  Google Scholar 

  128. Sun M, Niknejad S, Zhang G, Lee M, Wu L, Zhou Y (2015) Microstructure and mechanical properties of resistance spot welded AZ31/AA5754 using a nickel interlayer. Mater Des 87:905–913

    Google Scholar 

  129. Penner P, Liu L, Gerlich A, Zhou Y (2014) Dissimilar resistance spot welding of aluminum to magnesium with Zn-coated steel interlayers. Weld J 93(6):225s–231s

    Google Scholar 

  130. Qiu R, Higuchi K, Satonaka S, Iwamoto C (2009) Characterization of joint between titanium and aluminum alloy welded by resistance spot welding with cover plate. 溶接学会論文集 27 (2):109s–113s

  131. Pereira A, Ferreira J, Antunes F, Bártolo P (2010) Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints. J Mater Process Technol 210(4):610–617

    Article  Google Scholar 

  132. Tao W, Ma Y, Chen Y, Li L, Wang M (2014) The influence of adhesive viscosity and elastic modulus on laser spot weld bonding process. Int J Adhes Adhes 51:111–116

    Article  Google Scholar 

  133. Liu L, Ren D, Li Y (2011) Static mechanics analyses of different laser weld bonding structures in joining AZ61 Mg alloy. Int J Adhes Adhes 31(7):660–665

    Article  Google Scholar 

  134. Shen J, Zhang Y, Lai X, Wang P (2012) Adhesive placement in weld-bonding multiple stacks of steel sheets. Weld J 91:59s–66s

    Google Scholar 

  135. Zhang Y, Sun H, Wang P-C, Chen G (2014) Improvement of process robustness in weld bonding of galvanized DP780 steel. Weld J 93(12):472S–481S

    Google Scholar 

  136. Sam S, Shome M (2010) Static and fatigue performance of weld bonded dual phase steel sheets. Sci Technol Weld Join 15(3):242–247

    Article  Google Scholar 

  137. Khan MF, Dwivedi D, Ghosh P (2010) Studies on the effect of process parameters on the shear performance of joints of aluminium alloy produced by adhesive joining, spot welding and weld-bonding. In: Proceedings of the 36th International MATADOR Conference. Springer, pp 287–292

  138. Darwish S (2003) Characteristics of weld-bonded commercial aluminum sheets (BS 1050). Int J Adhes Adhes 23(3):169–176

    Article  Google Scholar 

  139. Zheng R, Lin J, Wang P-C, Wu Y (2015) Correlation between surface characteristics and static strength of adhesive-bonded magnesium AZ31B. Int J Adv Manuf Technol:1–10

  140. Senkara J, Zhang H (2000) Cracking in spot welding aluminum alloy AA5754. Weld J 79(7):194-s

    Google Scholar 

  141. Ghazanfari H, Naderi M (2014) Expulsion characterization in resistance spot welding by means of a hardness mapping technique. Int J Miner Metall Mater 21(9):894–897

    Article  Google Scholar 

  142. Yi L, Rui W, Xiaojian X, Yang Z (2015) Expulsion analysis of resistance spot welding on zinc-coated steel by detection of structure-borne acoustic emission signals. Int J Adv Manuf Technol:1–8

  143. Qiu R, Wang N, Shi H, Zhang K, Satonaka S (2014) Non-parametric effects on pore formation during resistance spot welding of magnesium alloy. Sci Technol Weld Join 19(3):231–234

    Article  Google Scholar 

  144. Tu YM, Qiu RF, Shi HX, Yu H, Zhang KK (2011) Analyses of influencing factors of pore formation during resistance spot welding of magnesium alloy. Mater Process Technol Pts 1-4 291-294:2885–2888

  145. Zhang H, Senkara J, Wu X (2002) Suppressing cracking in RSW AA5754 aluminum alloys by mechanical means. ASME J Manuf Sci Eng 124:79–85

    Article  Google Scholar 

  146. Lum I, Biro E, Zhou Y, Fukumoto S, Boomer D (2004) Electrode pitting in resistance spot welding of aluminum alloy 5182. Metall Mater Trans A 35(1):217–226

    Article  Google Scholar 

  147. Zhou Y, Fukumoto S, Peng J, Ji C, Brown L (2004) Experimental simulation of surface pitting of degraded electrodes in resistance spot welding of aluminium alloys. Mater Sci Technol 20(10):1226–1232

    Article  Google Scholar 

  148. Peng J, Fukumoto S, Brown L, Zhou N (2004) Image analysis of electrode degradation in resistance spot welding of aluminium. Sci Technol Weld Join 9(4):331–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yusof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manladan, S.M., Yusof, F., Ramesh, S. et al. A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90, 605–634 (2017). https://doi.org/10.1007/s00170-016-9225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9225-9

Keywords

Navigation