Skip to main content

Advertisement

Log in

Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Palm oil was used as the base oil of minimum-quantity lubricant cooling (MQLC) grinding of Ni-based alloy. Eight nanofluids with different volume fractions of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 % were prepared by using carbon nanotube (CNT) nanoparticles for the experiment on MQLC grinding of Ni-based alloy. Grinding force, grinding temperature, and proportionality coefficient of energies transferred into the workpiece were analyzed and discussed based on the thermal conductivity, viscosity, and contact angle of the nanofluid. Heat exchange performances of the eight prepared nanofluids were studied in sequence. The volume fraction of 2 % nanofluid achieved 21.93 N grinding force, the lowest grinding temperature of 109.8 °C, and the lowest proportionality coefficient of 42.7 %. The high thermal conductivity of nanofluids is conducive to quick heat transfer. High viscosity promotes the lubrication effect and can reduce energy input and the production of grinding heat. The contact angle and surface tension of eight kinds of nanofluids showed a trend of 2 % < 2.5 % < 4 % < 3.5 % < 3 % < 1.5 % < 1 % < 0.5 %. Thus, the volume fraction of 2 % nanofluid-based MQLC grinding Ni-based alloy achieved the optimal lubrication and heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Li BM, Zhao B (2003) Modern grinding technology. China. China Machine Press, Beijing

    Google Scholar 

  2. Ren J, Hua A (2011) Grinding principle. China. Electronic Industry Press, Beijing

    Google Scholar 

  3. Vajjha RS, Das DK (2012) A review and analysis on influence of temperature and concentration of nanofluids on. Int J Heat Mass Trans 55:4063–4078

    Article  Google Scholar 

  4. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  5. Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. Journal ofApplied Physics 97(6):064311–064314

    Article  Google Scholar 

  6. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Science 44(4):367–373

    Article  Google Scholar 

  7. Ahmed ADS, Sayuti M, Hamdi M (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. Int J Adv Manuf Technol 63(5–8):505–512

    Google Scholar 

  8. Sadeghi MH, Haddad MJ, Tawakoli T, Emami M (2009) Minimal quantity lubrication-MQL in grinding of Ti–6Al–4 V titanium alloy. Int J Adv Manuf Technol 44(5–6):487–500

    Article  Google Scholar 

  9. Lee P H, Nam TS, Li C, Lee SW (2010, December) Environmentally-friendly nano-fluid minimum quantity lubrication (MQL) meso-scale grinding process using nano-diamond particles. In Manufacturing Automation (ICMA), 2010 International Conference on (pp. 44–49). IEEE

  10. Mao C, Tang XJ, Zou HF, Huang XM, Zhou ZX (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J precision engineering and manuf 13(10):1745–1752

    Article  Google Scholar 

  11. Mao C, Zou HF, Huang XM, Zhang JA, Zhou ZX (2013) The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. Int J Adv Manuf Technol 64:1791–1799

    Article  Google Scholar 

  12. Sayuti M, Sarhan A, Hamdi M (2013) An investigation of optimum SiO nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. Int J Adv Manuf Technol 67(1–4):833–849

    Article  Google Scholar 

  13. Mao C, Zou H, Zhou X, Huang Y, Gan H, Zhou Z (2014) Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding. Int J Adv Manuf Technol 71(9–12):2073–2081

    Article  Google Scholar 

  14. Shen B, Shih AJ, Tung SC (2008) Application of nanofluids in minimum quantity lubrication grinding. Tribol Trans 51(6):730–737

    Article  Google Scholar 

  15. Kalita P, Malshe AP, Kumar SA, Yoganath VG, Gurumurthy T (2012a) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14(2):160–166

    Article  Google Scholar 

  16. Kalita P, Malshe AP, Rajurkar KP (2012b) Study of tribochemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding. CIRP Annals: Manufacturing Technology 61(1):327–330

    Article  Google Scholar 

  17. Setti D, Ghosh S, Venkateswara Rao P (2012) Application of nano cutting fluid under minimum quantity lubrication (MQL) technique to improve grinding of Ti-6Al-4 V alloy. World Acad Sci Eng Technol 6:493–497

    Google Scholar 

  18. Zhang YB, Li CH, Jia DZ, Zhang DK, Zhang XW (2015b) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87(1):930–940

    Article  Google Scholar 

  19. Zhang DK, Li CH, Zhang YB, Jia DZ, Zhang XW (2015a) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78(5–8):1275–1288

    Article  Google Scholar 

  20. Ding WF, Xu JH, Chen ZZ, Yang CY, Song CJ, Fu YC (2013) Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents. Int J Adv Manuf Technol 67(5–8):1309–1315

    Article  Google Scholar 

  21. Dai JB, Ding WF, Zhang LG, Xu JH, Su HH (2015) Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. Int J Adv Manuf Technol 81(5–8):995–1005

    Article  Google Scholar 

  22. Chen ZZ, Xu JH, Ding WF, Ma CY, Fu YC (2015) Grinding temperature during high-efficiency grinding Inconel 718 using porous CBN wheel with multilayer defined grain distribution. Int J Adv Manuf Technol 77(1–4):165–172

    Article  Google Scholar 

  23. Wang YG, Li CH, Zhang YB, Yang M, Li BK, Jia DZ, Hou YL, Mao C (2016b) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499

    Article  Google Scholar 

  24. Fan J, Wang L (2011) Review of heat conduction in nanofluids. J Heat Transf 133(4):040801

    Article  Google Scholar 

  25. Shen B, Shih AJ (2009) Minimum quantity lubrication (MQL) grinding using vitrified CBN wheels. Trans NAMRI/SME 37:129–136

    Google Scholar 

  26. Li BK, Li CH, Wang YG, Zhang YB, Yang M, Zhang XW (2015a) Technological investigation about minimum quantity lubrication grinding metallic material with nanofluid. Recent Patents on Materials Science 8(3):208–224

    Article  Google Scholar 

  27. Su Y, Gong L, Li B, Liu Z, Chen D (2016) Performance evaluation of nanofluid mql with vegetable-based oil and ester oil as base fluids in turning. International Journal of Advanced Manufacturing Technology 83(9–12):2083–2089

  28. Jia DZ, Li CH, Zhang DK, Zhang YB, Zhang XW (2014) Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J Nanopart Res 16(12):1–15

    Article  Google Scholar 

  29. Sullivan PA, Eisen EA, Woskie SR, Kriebel D, Wegman DH, Hallock MF, Monson RR (1998) Mortality studies of metalworking fluid exposure in theautomobile industry: VI. A case—control study of esophageal cancer. Am J Ind Med 34(1):36–48

    Article  Google Scholar 

  30. Guo C, Malkin S (1992) Heat transfer in grinding. In: transport phenomena in food processing, first international conference proceedings. CRC Press, p. 377

  31. Li BK, Li CH, Zhang YB, Wang YG, Jia DZ, Yang M (2015b) Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut

  32. Chandrasekar M, Suresh S, Senthilkumar T (2012) Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids—a review. Renew Sust Energ Rev 16(6):3917–3938

    Article  Google Scholar 

  33. Wang YG, Li CH, Zhang YB, Li BK, Yang M, Zhang XW, Liu GT, Guo SM (2016a) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198–210

    Article  Google Scholar 

  34. Chen X, Rowe WB, Mccormack DF (2000) Analysis of the transitional temperature for tensile residual stress in grinding. J Mater Process Technol 107(1):216–221

    Article  Google Scholar 

  35. Zhou ZY, Di QQ, Liu B, Ma XY, Cai BH (2016) Experimental study on the surface tension of Al2O3-H2O nanofluid. Mater Sci Forum 852:394–400

    Article  Google Scholar 

  36. Wusiman K, Jeong H, Tulugan K, Afrianto H, Chung H (2013) Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS. International Communications in Heat & Mass Transfer 41(1):28–33

    Article  Google Scholar 

  37. Xuan Y, Qiang L, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AICHE J 49(4):1038–1043

    Article  Google Scholar 

  38. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat & Mass Transfer 45(4):855–863

    Article  MATH  Google Scholar 

  39. Xie H, Xi T, Wang J (2003) Study on the mechanism of heat conduction in nanofluid medium. Acta Phys Sin 52(6):1444–1449

    Google Scholar 

  40. Namburu PK, Kulkarni DP, Misra D, Das DK (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal & Fluid Science 32(2):397–402

    Article  Google Scholar 

  41. Kole M, Dey TK (2010) Viscosity of alumina nanoparticles dispersed in car engine coolant. Experimental Thermal & Fluid Science 34(6):677–683

    Article  Google Scholar 

  42. Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B (1993) Radial deformation of carbon nanotubes by van der waals forces. Nature International Weekly Journal of Science 364(6437):514–516

    Google Scholar 

  43. Yang B, Wang J, Liu J (2014) Heat transfer enhancement of carbon nanofluid. High Power Laser and Particle Beams 26(5):21–23

    Google Scholar 

  44. Maxwell JC (1904) A treatise on electricity and magnetism, seconded. Oxford University Press, Cambridge

    Google Scholar 

  45. Hamilton RL, Crosser OK (1962) IEC Fundamentals. Int Heat Mass Trans 2:187–189

    Google Scholar 

  46. Xue QZ (2005) Model for thermal conductivity of carbon nanotube-based composites. Physica B Condensed Matter 368(s1–4):302–307

    Article  Google Scholar 

  47. Luo ZY, Wu YQ, Hu Q, Wang T, Ni MJ (2015) Thermal and rheological properties of carbon nanotubes-oil nanofluid. Journal of Chemical Engineering of Chinese Universities 29(1):35–42

    Google Scholar 

  48. Yamamoto T, Noda S, Kato M (2011) A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects. Carbon 49(10):3179–3183

    Article  Google Scholar 

  49. Zhang YB, Li CH, Jia DZ, Zhang DK, Zhang XW (2015c) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in ni-based alloy grinding. International Journal of Machine Tools & Manufacture 99:19–33

    Article  Google Scholar 

  50. Liu JH, Wu SQ, He CX, Zhuo HT, Zhu CZ, Li CH, Zhang QL (2013) Structure, property and application of carbon nanotubes and carbon microtubes. Journal of Shenzhen University Science and Engineering 30(1):1–11

    Article  Google Scholar 

  51. Saha S, Cruden BA, Cassell AM (2006) Thermal contact resistance and thermal conductivity of a carbon nanofiber. J Heat Transf 128(3):234–239

    Article  Google Scholar 

  52. Ma LX, Chang Q, Huo JY, Wang YP (2015) Experiment study on preparation and thermal properties of water-based carbon nanotubes nanofluids. Materials Review 29(8):79–82

    Google Scholar 

  53. Xia HT (2015) Physical chemistry. Chemical Industry Press, Beijing

    Google Scholar 

  54. Shavit U, Chigier N (1995) The role of dynamic surface tension in air assist atomization. Physics of Fluids (1994-present) 7(1):24–33

    Article  Google Scholar 

  55. Chidambaram EL, Arunachalam N, Vijayaraghavan L (2015) Analytical model to predict Sauter mean diameter in air assisted atomizers for MQL in machining application. Procedia CIRP 37:117–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, C., Zhang, Y. et al. Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int J Adv Manuf Technol 89, 3459–3474 (2017). https://doi.org/10.1007/s00170-016-9324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9324-7

Keywords

Navigation