Skip to main content
Log in

Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machine condition monitoring is considered as an important diagnostic and maintenance strategy to ensure product quality and reduce manufacturing cost. However, currently, most additive manufacturing (AM) machines are not equipped with sensors for system monitoring. In this paper, a real-time lightweight AM machine condition monitoring approach is proposed, where acoustic emission (AE) sensor is used. In the proposed method, the original AE waveform signals are first simplified as AE hits, and then segmental and principal component analyses are applied to further reduce the data size and computational cost. From AE hits, the hidden semi-Markov model (HSMM) is applied to identify the machine states, including both normal and abnormal ones. Experimental studies on fused deposition modeling (FDM), one of the most popular AM technology, show that the typical machine failures can be identified in a real-time manner. This monitoring method can serve as a diagnostic tool for FDM machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Ghamd AM, Mba D (2006) A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size. Mech Syst Signal Process 20(7):1537–1571. doi:10.1016/j.ymssp.2004.10.013

    Article  Google Scholar 

  2. Armillotta A (2006) Assessment of surface quality on textured fdm prototypes. Rapid Prototyp J 12(1):35–41. doi:10.1108/13552540610637255

  3. Babel R, Koshy P, Weiss M (2013) Acoustic emission spikes at workpiece edges in grinding: origin and applications. Int J Mach Tools Manuf 64:96–101. doi:10.1016/j.ijmachtools.2012.08.004

    Article  Google Scholar 

  4. Bulla J, Bulla I (2006) Stylized facts of financial time series and hidden semi-Markov models. Comput Stat Data Anal 51(4):2192–2209. doi:10.1016/j.csda.2006.07.021

    Article  MathSciNet  MATH  Google Scholar 

  5. Bulla J, Bulla I, Nenadić O (2010) hsmm—an r package for analyzing hidden semi-markov models. Comput Stat Data Anal 54(3):611–619. doi:10.1016/j.csda.2008.08.025

    Article  MathSciNet  MATH  Google Scholar 

  6. Bulla J, Lagona F, Maruotti A, Picone M (2012) A multivariate hidden Markov model for the identification of sea regimes from incomplete skewed and circular time series. J Agric Biol Environ Stat 17(4):544–567. doi:10.1007/s13253-012-0110-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen J, Jiang YC (2011) Development of hidden semi-Markov models for diagnosis of multiphase batch operation. Chem Eng Sci 66(6):1087–1099. doi:10.1016/j.ces.2010.12.009

    Article  Google Scholar 

  8. Chen X, Li B (2006) Acoustic emission method for tool condition monitoring based on wavelet analysis. Int J Adv Manuf Technol 33(9-10):968–976. doi:10.1007/s00170-006-0523-5

    Article  Google Scholar 

  9. US Department of Commerce N Roadmapping workshop: Measurement science for prognostics and health management of smart manufacturing systems. http://www.nist.gov/el/isd/phm4sms-workshop.cfm

  10. Conner BP, Manogharan GP, Martof AN, Rodomsky LM, Rodomsky CM, Jordan DC, Limperos JW (2014) Making sense of 3-d printing: creating a map of additive manufacturing products and services. Addit Manuf 1–4:64–76. doi:10.1016/j.addma.2014.08.005

    Article  Google Scholar 

  11. Dong M, He D (2007) A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mech Syst Signal Process 21(5):2248–2266. doi:10.1016/j.ymssp.2006.10.001

    Article  MathSciNet  Google Scholar 

  12. Feng Z, Liang M, Chu F (2013) Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech Syst Signal Process 38(1):165–205. doi:10.1016/j.ymssp.2013.01.017

  13. Geramifard O, Xu JX, Zhou JH, Li X (2011) Continuous health condition monitoring: a single hidden semi-Markov model approach, pp 1–10. doi:10.1109/ICPHM.2011.6024333

  14. Geramifard O, Xu JX, Zhou JH, Li X (2012) A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnostics and prognostics. IEEE Trans Ind Inf 8(4):964–973. doi:10.1109/TII.2012.2205583

    Article  Google Scholar 

  15. Gherras N, Serris E, Fevotte G (2012) Monitoring industrial pharmaceutical crystallization processes using acoustic emission in pure and impure media. Int J Pharm 439(1–2):109–119. doi:10.1016/j.ijpharm.2012.09.048.00009

    Article  Google Scholar 

  16. Guédon Y (2003) Estimating hidden semi-Markov chains from discrete sequences. J Comput Graph Stat 12 (3):604–639. doi:10.1198/1061860032030

    Article  MathSciNet  Google Scholar 

  17. Hsu CW, Lin C (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425. doi:10.1109/72.991427.05208

    Article  Google Scholar 

  18. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014,001–014,001. doi:10.1115/1.4028725

  19. Hung CW, Lu MC (2013) Model development for tool wear effect on AE signal generation in micromilling. Int J Adv Manuf Technol 66(9–12):1845–1858. doi:10.1007/s00170-012-4464-x

    Article  Google Scholar 

  20. Jardine AKS, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510. doi:10.1016/j.ymssp.2005.09.012

    Article  Google Scholar 

  21. Jian H, Lee HR, Ahn JH (2013) Detection of bearing/rail defects for linear motion stage using acoustic emission. Int J Precis Eng Manuf 14(11):2043–2046. doi:10.1007/s12541-013-0256-y

    Article  Google Scholar 

  22. Jolliffe I (2002) Principal component analysis. Wiley Online Library

  23. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas

  24. Kharrat M, Ramasso E, Placet V, Boubakar M (2016) A signal processing approach for enhanced acoustic emission data analysis in high activity systems: application to organic matrix composites. Mech Syst Signal Process 70–71:1038–1055. doi:10.1016/j.ymssp.2015.08.028

  25. Kral Z, Horn W, Steck J (2013) Crack propagation analysis using acoustic emission sensors for structural health monitoring systems, vol 2013. http://www.hindawi.com/journals/tswj/2013/823603/abs/

  26. Lei Y, Lin J, He Z, Zuo MJ (2013) A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech Syst Signal Process 35(1–2):108–126. doi:10.1016/j.ymssp.2012.09.015

    Article  Google Scholar 

  27. Lin C (2014) Early fault detection and optimal maintenance control for partially observable systems subject to vibration monitoring. Ph.D thesis. https://tspace.library.utoronto.ca/handle/1807/68266

  28. Liu Q, Dong M, Lv W, Geng X, Li Y (2015) A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis. Mech Syst Signal Process 64–65:217–232. doi:10.1016/j.ymssp.2015.03.029

    Article  Google Scholar 

  29. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition and productivity

  30. Niri ED, Farhidzadeh A, Salamone S (2013) Adaptive multisensor data fusion for acoustic emission source localization in noisy environment. Struct Health Monit 12(1):59–77. doi:10.1177/1475921712462937

    Article  Google Scholar 

  31. Pei E, Campbell RI, de Beer D (2011) Entry-level rp machines: how well can they cope with geometric complexity? Assem Autom 31(2):153–160. doi:10.1108/01445151111117737

    Article  Google Scholar 

  32. Peng ZK, Chu FL (2004) Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst Signal Process 18(2):199–221. doi:10.1016/S0888-3270(03)00075-X

    Article  Google Scholar 

  33. Ramasso E, Placet V, Boubakar M (2015) Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites. IEEE Trans Instrum Meas 64(12):3297–3307. doi:10.1109/TIM.2015.2450354

    Article  Google Scholar 

  34. Rao P, Liu J, Roberson D, Kong ZJ, Williams C (2015) Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J Manuf Sci Eng 137(6):61,007. doi:10.1115/1.4029823

    Article  Google Scholar 

  35. Reutzel EW, Nassar AR (2015) A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyp J 21(2):159–167. doi:10.1108/RPJ-12-2014-0177

  36. Springer DB, Tarassenko L, Clifford GD (2016) Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng 63(4):822–832. doi:10.1109/TBME.2015.2475278

  37. Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science and Engineering 136(6):060,801–060,801. doi:10.1115/1.4028540

    Article  Google Scholar 

  38. Viera AJ, Garrett JM, et al. (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363

    Google Scholar 

  39. Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84(5-8):11483–1495. doi:10.1007/s00170-015-7809-4

  40. Yang Z, Yu Z, Wu H, Chang D (2014) Laser-induced thermal damage detection in metallic materials via acoustic emission and ensemble empirical mode decomposition. J Mater Process Technol 214(8):1617–1626. doi:10.1016/j.jmatprotec.2014.03.009

    Article  Google Scholar 

  41. Yang Z, Yu Z, Xie C, Huang Y (2014) Application of Hilbert–Huang transform to acoustic emission signal for burn feature extraction in surface grinding process. Measurement 47:14–21. doi:10.1016/j.measurement.2013.08.036

    Article  Google Scholar 

  42. Zaslavsky A, Perera C, Georgakopoulos D (1301) Sensing as a service and big data. arXiv:1301.0159 [cs] (2013). ArXiv:0159

Download references

Acknowledgments

Wu and Yu were supported in part by the National Natural Science Foundation of China (Grant No. 51675481). Wu was also supported by the China Scholarship Council with a scholarship (No. 201406320108) and is thankful to Dr. Jian Qiu for discussions. The authors appreciate the comments from anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Yu, Z. & Wang, Y. Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model. Int J Adv Manuf Technol 90, 2027–2036 (2017). https://doi.org/10.1007/s00170-016-9548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9548-6

Keywords

Navigation