Skip to main content
Log in

Review of machining metal matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMCs) are materials which have been widely used in the aerospace and automobile industries since the 1980s and have been classified as hard-to-machine materials. During the intervening years, only a limited amount of research has been conducted into the cutting action of MMCs. As with traditional materials, it is important to understand the wear mechanisms that contribute to tool wear which reduces tool life. The objective of this research is to evaluate the machinability characteristics for these hard-to-machine material MMCs. This review will also establish the optimum machining parameters vital to maximizing tool life whilst producing parts at the desired quantity and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridlyander, J.N. (1995) Metal matrix composites. In: Fridlyander JN (ed) Chapman & Hall, London

  2. Ibrahim, I.A., F.A. Mohamed, and E.J. Lavernia (1991) Particulate reinforced metal matrix composites - a review. pp 1137–1156

  3. Davim JP (2002) Diamond tool performance in machining metal–matrix composites. J Mater Process Technol 128(1–3):100–105

    Article  Google Scholar 

  4. Rai RN et al (2006) A study on the machinability behaviour of Al-TiC composite prepared by in situ technique. Mater Sci Eng A 428(1–2):34–40

    Article  Google Scholar 

  5. Torralba JM, da Costa CE, Velasco F (2003) P/M aluminum matrix composites: an overview. J Mater Process Technol 133(1–2):203–206

    Article  Google Scholar 

  6. Chawla N, Chawla KK (2013) Metal Matrix Composites. Springer, New York

    Book  MATH  Google Scholar 

  7. Lin JT, Bhattacharyya D, Ferguson WG (1998) Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites. Compos Sci Technol 58(2):285–291

    Article  Google Scholar 

  8. Gururaja, S., M. Ramulu, and W. Pedersen (2013) Machining of MMCs: a review. Mach Sci Technol 41–73

  9. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101

    Article  Google Scholar 

  10. Aronson RB (1999) Machining composites. Manuf Eng 122(1):52–59

    Google Scholar 

  11. Quan YM, Zhou ZH, Ye BY (1999) Cutting process and chip appearance of aluminum matrix composites reinforced by SiC particle. J Mater Process Technol 91(1–3):231–235

    Article  Google Scholar 

  12. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53(1):91–94

    Article  Google Scholar 

  13. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip–tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tools Manuf 49(9):690–700

    Article  Google Scholar 

  14. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46(14):1795–1803

    Article  Google Scholar 

  15. Jeyakumar S, Marimuthu K, Ramachandran T (2013) Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM. J Mech Sci Technol 27(9):2813–2822

    Article  Google Scholar 

  16. Liu J, Li J, Xu C (2014) Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: a review. CIRP J Manuf Sci Technol 7(2):55–70

    Article  Google Scholar 

  17. Davim JP (2011) ISBN: 978-0-85729-937-6 Machining of metal matrix composites. Springer, London

    Google Scholar 

  18. Davim JP (2009) ISBN: 978-1-84821-103-4 Machining of composites materials. Wiley, London

    Google Scholar 

  19. Niu Z, Cheng K (2016) Multiscale multiphysics-based modeling and analysis on the tool wear in micro drilling. Journal of Multiscale Modelling 7(12):1640002–1640022

    Article  Google Scholar 

  20. Wang C, Cheng K, Rakowski R, Greenwood D, Wale J (2016) Comparative studies on the effect of pilot drillings with application to high-speed drilling of carbon fibre reinforced plastic (CFRP) composites. Int J Adv Manuf Technol 1–13

  21. Barnes S, Pashby IR (1995) Machining of aluminium based metal matrix composites. Appl Compos Mater 2:31–42

    Article  Google Scholar 

  22. Durante S, Rutelli G, Rabezzana F (1997) Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol 94–95:632–640

    Article  Google Scholar 

  23. Tomac N, Tonnessen K (1992) Machinability of particulate aluminium matrix composites. CIRP Ann Manuf Technol 41(1):55–58

    Article  Google Scholar 

  24. Haq AN, Marimuthu P, Jeyapaul R (2008) Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int J Adv Manuf Technol 37(3–4):250–255

    Article  Google Scholar 

  25. Ciftci I, Turker M, Seker U (2004) CBN cutting tool wear during machining of particulate reinforced MMCs. Wear 257(9–10):1041–1046

    Article  Google Scholar 

  26. Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7–12):1225–1234

    Article  Google Scholar 

  27. Njuguna MJ, Gao D, Zhaopeng H (2013) Tool wear, surface integrity and dimensional accuracy in turning Al2124SiCp (45 %wt) metal matrix composite using CBN and PCD tools. Res J Appl Sci Eng Technol 6(22):4138–4144

    Google Scholar 

  28. Kannan S (2006) Machining of metal matrix composites: forces, tool wear and attainable surface quality, in department of mechanical engineering. The University of New Brunswick

  29. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites: part I: tool performance. J Mater Process Technol 83(1–3):151–158

    Article  Google Scholar 

  30. Beristain, J., O. Gonzalo, and A. Sanda (2014) Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts. Rev Metal 50(1)

  31. Hung NP et al (1996) Machinability of aluminum alloys reinforced with silicon carbide particulates. J Mater Process Technol 56(1–4):966–977

    Article  Google Scholar 

  32. Songmene V, Balazinski M (1999) Machinability of graphitic metal matrix composites as a function of reinforcing particles. CIRP Ann Manuf Technol 48(1):77–80

    Article  Google Scholar 

  33. Boswell B, Islam MN, Pramanik A (2015) Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proc Inst Mech Eng B J Eng Manuf. doi:10.1177/0954405415583776

    Google Scholar 

  34. Cronjäger L, Meister D (1992) Machining of fibre and particle-reinforced aluminium. CIRP Ann Manuf Technol 41(1):63–66

    Article  Google Scholar 

  35. Narahari P, Pai BC, Pillai RM (1999) Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools. J Mater Eng Perform 8(5):538–542

    Article  Google Scholar 

  36. Teti R (2002) Machining of composite materials. CIRP Ann Manuf Technol 51(2):611–634

    Article  Google Scholar 

  37. Chen P, Hoshi T (1992) High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Ann Manuf Technol 41(1):59–62

    Article  Google Scholar 

  38. Hung NP et al (1995) Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. J Mater Process Technol 48(1–4):291–297

    Article  Google Scholar 

  39. Chambers AR (1996) The machinability of light alloy MMCs. Compos A: Appl Sci Manuf 27(2):143–147

    Article  Google Scholar 

  40. Mcginty MJ, Preuss CW (1985) Machining ceramic fiber metal matrix composites. In: Sarin VK (ed) Congress on high productivity in machining, materials and processing. ASM International, New Orleans, LA

    Google Scholar 

  41. Basavarajappa S, Chandramohan G, Davim JP (2008) Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J Mater Process Technol 196(1–3):332–338

    Article  Google Scholar 

  42. Ramulu M, Rao PN, Kao H (2002) Drilling of (Al2O3)p/6061 metal matrix composites. J Mater Process Technol 124(1–2):244–254

    Article  Google Scholar 

  43. Taşkesen A, Kütükde K (2014) Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement 47:321–330

    Article  Google Scholar 

  44. Black JT, Kohser RA, DeGarmo EP (2008) DeGarmo’s materials and processes in manufacturing, 10th edn. Wiley, Hoboken, NJ xvi. 1010 p

    Google Scholar 

  45. Abdullah, A. (1996) Machining of aluminium based metal matrix composite in school of engineering. University of Warwick

  46. Pedersen W, Ramulu M (2006) Facing SiCp/Mg metal matrix composites with carbide tools. J Mater Process Technol 172(3):417–423

    Article  Google Scholar 

  47. Sun, F., et al. (2004) High speed milling of SiC particle reinforced aluminum-based MMC with coated carbide inserts. Key Eng Mater 457–462

  48. Ciftci I, Turker M, Seker U (2004) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des 25(3):251–255

    Article  Google Scholar 

  49. Übeyli M et al (2007) Study on performance of uncoated and coated tools in milling of Al-4%Cu/B4C metal matrix composites. Mater Sci Technol 23(8):945–950

    Article  Google Scholar 

  50. Quigley O, Monaghan J, O’Reilly P (1994) Factors affecting the machinability of an Al/SiC metal-matrix composite. J Mater Process Technol 43(1):21–36

    Article  Google Scholar 

  51. Hocheng H et al (1997) Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Compos A: Appl Sci Manuf 28(9–10):883–890

    Article  Google Scholar 

  52. Yanming Q, Zehua Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J Mater Process Technol 100(1–3):194–199

    Article  Google Scholar 

  53. Muthukrishnan N (2012) Machinability studies on fabricated Al Sic B4c hybrid metal matrix composites by turning. Manag J Mech Eng 2(2):32–40

    Google Scholar 

  54. Kaarmuhilan K, Karthika S, Muthukrishnan N (2011) Performance evaluation of PCD 1300 and 1500 grade inserts on turning A356 alloy with 20 % reinforcement of SiC particles. Appl Mech Mater 110-116:1855

    Article  Google Scholar 

  55. Joshi, S.S. (2012) Machining metal matrix composites using diamond tools. In: Hocheng H. (ed) Machining technology for composite materials. Woodhead Publishing, pp 426–459

  56. Tönshoff HK, Winkler J (1997) The influence of tool coatings in machining of magnesium. Surf Coat Technol 94–95:610–616

    Article  Google Scholar 

  57. Masounave J, Litwin J, Hamelin D (1994) Prediction of tool life in turning aluminium matrix composites. Mater Des 15(5):287–293

    Article  Google Scholar 

  58. Hung NP, Loh NL, Xu ZM (1996) Cumulative tool wear in machining metal matrix composites part II: machinability. J Mater Process Technol 58(1):114–120

    Article  Google Scholar 

  59. J. R. Davis & Associates. and ASM International (1993) Handbook committee, aluminum and aluminum alloys. ASM specialty handbook. ASM International, Materials Park, OH iii, 784 p

    Google Scholar 

  60. Paulo Davim J, Baptista AM (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum. J Mater Process Technol 103(3):417–423

    Article  Google Scholar 

  61. Iuliano L, Settineri L, Gatto A (1998) High-speed turning experiments on metal matrix composites. Compos A: Appl Sci Manuf 29(12):1501–1509

    Article  Google Scholar 

  62. Weinert K, König W (1993) A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Ann Manuf Technol 42(1):95–98

    Article  Google Scholar 

  63. Cook MW (1998) Machining MMC engineering components with polycrystalline diamond and diamond grinding. Mater Sci Technol 14(9–10):892–895

    Article  Google Scholar 

  64. Davim JP, Baptista AM (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. J Mater Process Technol 103(3):417–423

    Article  Google Scholar 

  65. Chambers AR, Stephens SE (1991) Machining of Al 5 Mg reinforced with 5 vol.% Saffil and 15 vol.% SiC. Mater Sci Eng A 135:287–290

    Article  Google Scholar 

  66. Chen, P. and Y. Miyake (1989) Proceedings of 1989 ASM international conference on machinability. Cincinnati

  67. Boopathi MM, Arulshri KP, Iyandurai N (2013) Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. Am J Appl Sci 10(3):219–229

    Article  Google Scholar 

  68. Bansal P, Upadhyay L (2013) Experimental investigations to study tool wear during turning of alumina reinforced aluminium composite. Procedia Engineering 51:818–827

    Article  Google Scholar 

  69. Brun MK, Lee M, Gorsler F (1985) Wear characteristics of various hard materials for machining sic-reinforced aluminum alloy. Wear 104(1):21–29

    Article  Google Scholar 

  70. Andrewes CJE, Feng H-Y, Lau WM (2000) Machining of an aluminum/SiC composite using diamond inserts. J Mater Process Technol 102(1–3):25–29

    Article  Google Scholar 

  71. Kremer A, El Mansori M (2009) Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. Surf Coat Technol 204(6–7):1051–1055

    Article  Google Scholar 

  72. Wang YJ et al (2010) Tool wear in high speed milling of SiCp/Al2024 metal matrix composites. Appl Mech Mater 33:200

    Article  Google Scholar 

  73. Kremer A et al (2008) Machinability of AI/SiC particulate metal-matrix composites under dry conditions with CVD diamond-coated carbide tools. Mach Sci Technol 12(2):214–233

    Article  Google Scholar 

  74. Chou YK, Liu J (2005) CVD diamond tool performance in metal matrix composite machining. Surf Coat Technol 200(5–6):1872–1878

    Article  Google Scholar 

  75. Smith GT (2008) Cutting tool technology : industrial handbook. Springer, London, xii, 599 p

  76. Looney LA et al (1992) The turning of an Al/SiC metal-matrix composite. J Mater Process Technol 33(4):453–468

    Article  Google Scholar 

  77. Saravanan T, Udayakumar R (2013) Optimization of machining hybrid metal matrix composites using desirability analysis. Middle-East J Sci Res 15(12):1691–1697

    Google Scholar 

  78. Muthukrishnan, N., Davim, J. P., Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209(1):225–232

  79. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites: part II: workpiece surface integrity. J Mater Process Technol 83(1–3):277–285

    Article  Google Scholar 

  80. Suresh Kumar Reddy N, Kwang-Sup S, Yang M (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites. J Mater Process Technol 201(1–3):574–579

    Article  Google Scholar 

  81. Cheung CF et al (2002) Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites. Scr Mater 47(2):77–82

    Article  Google Scholar 

  82. Said, M.S., et al. (2014) Tool wear in machining AlSi/AlN metal matrix composite 10 wt% reinforcement using uncoated cutting tool. Appl Mech Mater 973–977

  83. Gaitonde, V. N., Karnik, S. R., & Davim, J. P. (2009) Some studies in metal matrix composites machining using response surface methodology. J Reinf Plast Compos, Sage, 28, 29:2445–2457

  84. Pandi G, Muthusamy S (2012) A review on machining and Tribological behaviors of aluminium hybrid composites. Procedia Engineering 38:1399–1408

    Article  Google Scholar 

  85. Manna A, Bhattacharayya B (2005) Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. Int J Adv Manuf Technol 25(9–10):850–856

    Article  Google Scholar 

  86. Palanikumar K, Muthukrishnan N, Hariprasad KS (2008) Surface rougness parameters optimising in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Mach Sci Technol 12(4):529–545

    Article  Google Scholar 

  87. Srinivasan A et al (2012) Machining performance study on metal matrix composites-a response surface methodology approach. Am J Appl Sci 9(4):478

    Article  Google Scholar 

  88. Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC-MMC. J Mater Process Technol 140(1–3):711–716

    Article  Google Scholar 

  89. Ozcatalbas Y (2003) Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique. Compos Sci Technol 63(1):53–61

    Article  Google Scholar 

  90. Karakaş MS et al (2006) Effect of cutting speed on tool performance in milling of B4Cp reinforced aluminum metal matrix composites. J Mater Process Technol 178(1–3):241–246

    Article  Google Scholar 

  91. Sahin Y (2003) Preparation and some properties of SiC particle reinforced aluminium alloy composites. Mater Des 24(8):671–679

    Article  Google Scholar 

  92. Davim JP (2012) Machining of metal matrix composites/edited. In: Davim JP (ed) SpringerLink. Springer London, London

    Google Scholar 

  93. Kannan S, Balazinski M, Kishawy HA (2005) Flank wear progression during machining metal matrix composites. J Manuf Sci Eng 128(3):787–791

    Article  Google Scholar 

  94. Premnath AA, Alwarsamy T, Rajmohan T (2012) Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites. Mater Manuf Process 27(10):1035–1044

    Article  Google Scholar 

  95. Bhushan RK (2012) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242–254

    Article  Google Scholar 

  96. Vibu Nanthan, M., C. Vidhusan, and S. Vignesh (2012) Machinability studies of turning Al/SiC/B4C hybrid metal matrix composites using ANOVA analysis. In: International conference on thermal, material and mechanical engineering. Singapore

  97. Davim JP (2003) Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132(1–3):340–344

    Article  Google Scholar 

  98. Ozcatalbas Y (2003) Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Mater Des 24(3):215–221

    Article  Google Scholar 

  99. Kumar A, Mahapatra MM, Jha PK (2014) Effect of machining parameters on cutting force and surface roughness of in situ Al–4.5%Cu/TiC metal matrix composites. Measurement 48:325–332

    Article  Google Scholar 

  100. Basavarajappa S et al (2007) Drilling of hybrid metal matrix composites—workpiece surface integrity. Int J Mach Tools Manuf 47(1):92–96

    Article  Google Scholar 

  101. ÜBeylİ M et al (2008) Effect of feed rate on tool wear in milling of Al-4%Cu/B4 Cp composite. Mater Manuf Process 23(8):865–870

    Article  Google Scholar 

  102. Ekici E, Samtaş G, Gülesin M (2014) Experimental and statistical investigation of the machinability of Al-10 % SiC MMC produced by hot pressing method. Arab J Sci Eng 39(4):3289–3298

    Article  Google Scholar 

  103. Anandakrishnan V, Mahamani A (2011) Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061–TiB2 in situ metal matrix composites produced by flux-assisted synthesis. Int J Adv Manuf Technol 55(1–4):65–73

    Article  Google Scholar 

  104. Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183, Part 2:883–888

    Article  Google Scholar 

  105. Finn, M. and A. Srivatsava (1996) Machining of advanced and engineered materials. Proc CSME Symp 616–623

  106. Ozben T, Kilickap E, Çakır O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1–3):220–225

    Article  Google Scholar 

  107. Pendse DM, Joshi SS (2004) Modeling and optimization of machining process in discontinuously reinforced aluminium matrix composites. Mach Sci Technol 8(1):85–102

    Article  Google Scholar 

  108. Gaitonde VN, Karnik SR, Davim JP (2009) Some studies in metal matrix composites machining using response surface methodology. J Reinf Plast Compos 28(20):2445–2457

    Article  Google Scholar 

  109. Dabade UA et al (2007) Surface finish and integrity of machined surfaces on Al/SiCp composites. J Mater Process Technol 192–193:166–174

    Article  Google Scholar 

  110. Radhika N, Subramaniam R, Senapathi SB (2013) Machining parameter optimisation of an aluminium hybrid metal matrix composite by statistical modelling. Ind Lubr Tribol 65(6):425–435

    Article  Google Scholar 

  111. Chandrasekaran M, Devarasiddappa D (2012) Development of predictive model for surface roughness in end milling of Al-SiCp metal matrix composites using fuzzy logic. World Acad Sci Eng Technol 67:930–935

    Google Scholar 

  112. Kilickap E et al (2005) Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164:862–867

    Article  Google Scholar 

  113. Babu TSM, Muthukrishnan N (2012) An experimental investigation and optimization of turning fabricated Al/SiC/B4C hybrid metal matrix composites using desirability analysis. Manag J Mech Eng 2(4):10–17

    Google Scholar 

  114. Pramanik, A., L. Zhang, and J. Arsecularatne (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation

  115. Rabindra B, Sutradhar G (2012) Machinability of LM6/SiCp metal matrix composites with tungsten carbide cutting tool inserts. J Eng Appl Sci 7(2):216

    Google Scholar 

  116. Muthukrishnan N, Murugan M, Prahlada Rao K (2008) Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int J Adv Manuf Technol 39(3–4):211–218

    Article  Google Scholar 

  117. Yuan ZJ, Geng L, Dong S (1993) Ultraprecision machining of SiCw/Al composites. CIRP Ann Manuf Technol 42(1):107–109

    Article  Google Scholar 

  118. Davim, J. P. Turning particulate metal matrix composites: experimental study of the evolution of the cutting forces, tool wear and workpiece surface roughness with the cutting time. Proc Inst Mech Eng B: J Eng Manuf 215(3):371–376

  119. Kishore DSC, Rao KP, Mahamani A (2014) Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite. Procedia Mater Sci 6:1040–1050

    Article  Google Scholar 

  120. Ramaswami R (1971) The effect of the built-up-edge(BUE) on the wear of cutting tools. Wear 18(1):1–10

    Article  Google Scholar 

  121. Sahin Y (2005) The effects of various multilayer ceramic coatings on the wear of carbide cutting tools when machining metal matrix composites. Surf Coat Technol 199(1):112–117

    Article  MathSciNet  Google Scholar 

  122. Karthikeyan R et al (2000) Optimizing the milling characteristics of Al-SiC particulate composites. Met Mater 6(6):539–547

    Article  MathSciNet  Google Scholar 

  123. Cronjager, L. and D. Biermann (1991) European conference on advanced materials and processes. Cambridge.

  124. Seeman M et al (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol 48(5–8):613–624

    Article  Google Scholar 

  125. Hocheng H (2012) Machining technology for composite materials: principles and practice. Woodhead Pub, Cambridge, UK; Philadelphia, PA xv, 472 p

    Book  Google Scholar 

  126. Dabade U, Joshi S (2012) Machining of Al/SiCp metal matrix composites at low temperature heating prior to machining. Appl Mech Mater 197:428

    Article  Google Scholar 

  127. Hung NP, Yeo SH, Oon BE (1997) Effect of cutting fluid on the machinability of metal matrix composites. J Mater Process Technol 67(1–3):157–161

    Article  Google Scholar 

  128. Braga DU et al (2002) Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys. J Mater Process Technol 122(1):127–138

    Article  Google Scholar 

  129. Shetty R et al (2008) Steam as coolant and lubricant in turning of metal matrix composites. Int Appl Phys Eng J 9(9):1245–1250

    Google Scholar 

  130. Graham D, Huddle D, McNamara D (2003) Machining dry is worth a try. Mod Mach Shop 76(5):79

    Google Scholar 

  131. Heine HJ (1997) Dry machining—a promising option. Am Mach 141(8):92

    Google Scholar 

  132. Canter N (2009) The possibilities and limitations of dry machining. Tribol Lubr Technol 65(3):40–44

    Google Scholar 

  133. Molinari A, Nouari M (2002) Modeling of tool wear by diffusion in metal cutting. Wear 252(1–2):135–149

    Article  Google Scholar 

  134. El-Hofy H (2014) Fundamentals of machining processes: conventional and nonconventional processes, 2 edn. CRC Press, Taylor & Francis Group, Boca Raton xliii, 517 pages

    Google Scholar 

  135. Cetin MH et al (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19(17–18):2049–2056

    Article  Google Scholar 

  136. Weinert K et al (2004) Dry machining and minimum quantity lubrication. CIRP Ann Manuf Technol 53(2):511–537

    Article  Google Scholar 

  137. Astakhov, V.P. (2010) Metal cutting theory foundations of near-dry (MQL) machining. SUISSE: Inderscience Publishers. 16.

  138. Solhjoei N et al (2012) High speed milling of Al203 particles reinforced aluminium MMC. Res J Appl Sci Eng Technol 4(17):3015–3020

    Google Scholar 

  139. Davim JP, Sreejith PS, Silva J (2009) Some studies about machining of MMC’S by MQL(minimum quantity of lubricant) conditions. Adv Compos Lett 18(1):21–23

    Google Scholar 

  140. Stjernstoft T (2004) Machining of some difficult-to-cut materials with rotary cutting tools. Industriell produktion, Stockholm

    Google Scholar 

  141. Müller F, Monaghan J (2001) Non-conventional machining of particle reinforced metal matrix composites. J Mater Process Technol 118(1–3):278–285

    Article  Google Scholar 

  142. Ramulu M, Taya M (1989) EDM machinability of SiCw/Al composites. J Mater Sci 24(3):1103–1108

    Article  Google Scholar 

  143. Pramanik A (2014) Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tools Manuf 86:44–61

    Article  Google Scholar 

  144. Jiang-Wen L et al (2015) High speed abrasive electrical discharge machining of particulate reinforced metal matrix composites. Int J Precis Eng Manuf 16(7):1399–1404

    Article  MathSciNet  Google Scholar 

  145. Satishkumar P et al (2015) Investigation on electronchemical micro machining of AL 6061-6 % wt Gr based on Taguchi design of experiments. Int J Chem Tech Res 7(1):203–211

    Google Scholar 

  146. Mohankumar V, Kanthababu M (2015) Review on machining aspects in metal matrix and ceramic matrix composites using abrasive waterjet. Appl Mech Mater 766(9):643–648

    Article  Google Scholar 

  147. Aramesh M et al (2015) Estimating the remaining useful tool life of worn tools under different cutting parameters: a survival life analysis during turning of titanium metal matrix composites (Ti-MMCs). CIRP J Manuf Sci Technol CIRPJ-341:9

    Google Scholar 

  148. Ghandehariun A, Hussein HM, Kishawy HA (2016) Machining metal matrix composites: novel analytical force model. Int J Adv Manuf Technol (83):233–241

  149. Ghandehariun A, Kishawy HA, Umer U, Hussein HM (2016) Analysis of tool-particle interactions during cutting process of metal matrix composites. Int J Adv Manuf Technol (82):143–152

  150. Ghandehariun A, Kishawy HA, Umer U, Hussein, HM (2016) On tool–workpiece interactions during machining metal matrix composites: investigation of the effect of cutting speed. Int J Adv Manuf Technol (84):2423–2435

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholls, C.J., Boswell, B., Davies, I.J. et al. Review of machining metal matrix composites. Int J Adv Manuf Technol 90, 2429–2441 (2017). https://doi.org/10.1007/s00170-016-9558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9558-4

Keywords

Navigation