Skip to main content
Log in

Recent developments in joining of aluminum alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The mass saving potential of light-weight materials, such as Al alloys, is beneficial for fuel economy and reducing CO2 emissions. However, the wide-spread use of these alloys has been long hindered due to the difficulty in fusion joining as well as their high cost. Welding of Al alloys, which are considered to be difficult to weld through conventional arc welding, is now possible by either of low heat input arc welding, high-power density fusion joining, such as laser beam welding and electron beam welding, or friction stir welding. Particularly, friction stir welding can be successfully applied to these materials owing to the fact that no melting takes place in the weld nugget. The aim of this overview is to summarize the developments in the joining of Al alloys over the recent years. This study is also intended to provide guidance for the industry and researchers dealing with joining of these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (1992) ASM handbook. In: Olson DL, et al. (eds) Properties and selection: non-ferrous alloys and special-purpose materials, vol. 2. ASM International, Materials Park

  2. (1992) ASM handbook. In: Olson DL, et al. (eds) Welding, brazing and soldering, vol. 6. ASM International, Materials Park

  3. Çam G, Mıstıkoğlu S (2014) Recent developments in friction stir welding of Al-alloys. JMEP 23(6):1936–1953

    Article  Google Scholar 

  4. Brumm S, Bürkner G (2015) Gas metal arc pulse welding with alternating current for lightweight materials. Materials Today: Proceedings 2(S1):S179–S187

    Article  Google Scholar 

  5. Çam G, Koçak M (1998) Progress in joining of advanced materials. Int Mater Rev 43(1):1–44

    Article  Google Scholar 

  6. Cam G, Kocak M (1998) Progress in joining of advanced materials-part II: joining of metal matrix composites and joining of other advanced materials. Sci Technol Weld Join 3(4):159–175

    Article  Google Scholar 

  7. Guo G, Zhang M, Chen H, Chen J, Li P, Yang YP (2015) Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains. Mater Des 85:309–317

    Article  Google Scholar 

  8. Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum-lithium alloys. J Manuf Process 16:166–175

    Article  Google Scholar 

  9. Çam G, Ventzke V, Dos Santos JF, Koçak M, Jennequin G, Gonthier-Maurin P, Penasa M, Rivezla C, Boisselier D (2000) Characterization of laser and electron beam welded Al-alloys. Prakt Metallogr 37(2):59–89

    Google Scholar 

  10. Canaby JL, Blazy F, Fries JF (1991) Effects of high temperature surface reaction of aluminum-lithium alloy on the porosity of welded areas. Mater Sci Eng A 136:131–139

    Article  Google Scholar 

  11. Xiao RS, Yang WX, Chen K (2007) Porosity characterization in laser welds of Al-Li alloy 1420. Appl Laser 27:13–17

    Google Scholar 

  12. Pickens JR (1985) The weldability of lithium-containing aluminum-alloys. J Mater Sci 20:4247–4258

    Article  Google Scholar 

  13. Chen K, Yang WX, Xiao RS (2012) Direct laser welding for Al–Li alloy plate without prior surface cleaning. Laser Eng 22:361–369

    Google Scholar 

  14. Pakdil M, Çam G, Koçak M, Erim S (2011) Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy. Mater Sci Eng A 528(24):7350–7356

    Article  Google Scholar 

  15. Malek Ghainia F, Sheikhi M, Torkamany MJ, Sabbaghzadeh J (2009) The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy. Mater Sci Eng A 519:167–171

    Article  Google Scholar 

  16. Kou S (1987) Welding metallurgy. Wiley, New York

    Google Scholar 

  17. Prasad Rao K, Ramanaiah N, Viswanathan N (2008) Partially melted zone cracking in AA6061 welds. Mater Des 29:179–186

    Article  Google Scholar 

  18. Gittos NF, Scott MH (1981) Heat affected zone cracking of Al-Mg-Si alloys. Weld J 60(6):95S–103s

    Google Scholar 

  19. Kerr HW, Katoh M (1987) Investigation of heat-affected zone cracking of GMA welds of Al-Mg-Si alloys using Varestraint test. Weld J 66(9):251s–259s

    Google Scholar 

  20. Kobe Steel, Ltd (2015) Arc welding of nonferrous metals. Kobe Steel, Ltd. Publishing. http://www.kobelco.co.jp/english/welding/events/files/2015_KOBELCO_Nonferrous.pdf. Accessed 21 November 2016

  21. Maya-Johnson S, Santa JF, Mejía OL, Aristizábal S, Ospina S, Cortés PA, Giraldo JE (2015) Effect of the number of welding repairs with GTAW on the mechanical behavior of AA7020 aluminum alloy welded joints. Metall Mater Trans B Process Metall Mater Process Sci 46(5):2332–2339

    Article  Google Scholar 

  22. Ahn J, Chen L, He E, Davies CM, Deara JP (2017) Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3. J Manuf Process 25:26–36

    Article  Google Scholar 

  23. Umamaheshwer Rao AC, Vasu V, Govindaraju M, Sai Srinadh KV (2016) Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans Nonferrous Met Soc China 26:1447–1471

    Article  Google Scholar 

  24. Enjo T, Kurodo T (1982) Microstructure in weld heat affected zone of Al-Mg-Si alloys. Trans JWRI 11(1):61–66

    Google Scholar 

  25. Kou S (1986) Welding metallurgy and weldability of high strength aluminum alloys. Weld Res Counc Bull No 320, University of Wisconsin-Madison, Wisconsin, USA.

  26. Brungraber RJ, Nelson FG (1973) Effect of welding variables on aluminum alloy weldments. Weld J 52(3):97s–103s

    Google Scholar 

  27. Martukanitz RP, Michnuk PR (1982) Sources of porosity in gas metal arc welding of aluminum. Trends in Welding Research, ASM International, pp 315–330

  28. Müller S, Koglin K (2003) Automatisches MIG-Schweißen von Aluminium im Karosseriebau-Anforderungen an Bauteile und Fertigungseinrichtungen. DVS Berichte, DVS-Verlag, Düsseldorf 225:131–134

  29. Hadadzadeh A, Ghaznavi MM, Kokabi AH (2014) The effect of gas tungsten arc welding and pulsed-gas tungsten arc welding processes parameters on the heat affected zone-softening behavior of strain-hardened Al–6.7 Mg alloy. Mater Des 55:335–342

    Article  Google Scholar 

  30. Gungor B, Kaluc E, Taban E, Şık A (2014) Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys. Mater Des 54:207–211

    Article  Google Scholar 

  31. Elrefaey A (2015) Effectiveness of cold metal transfer process for welding 7075 aluminium alloys. Sci Technol Weld Join 20(4):280–285

    Article  Google Scholar 

  32. Çam G, Ventzke V, Dos Santos JF, Koçak M, Jennequin G, Gonthier-Maurin P (1999) Characterisation of electron beam welded aluminium alloys. Sci Technol Weld Join 4(5):317–323

    Article  Google Scholar 

  33. Çam G, Koçak M (2007) Microstructural and mechanical characterization of electron beam welded Al-alloy 7020. J Mater Sci 42(17):7154–7161

    Article  Google Scholar 

  34. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple Smith P, Dawes CJ (1991) International patent application no. PCT/GB92/02203 and GB patent application no. 9125978.8 and US patent application no. 5, 460,317

  35. Thomas WM, Nicholas ED (1997) Friction stir welding for the transportation industries. Mater Des 18:269–273

    Article  Google Scholar 

  36. Kallee SW, Davenport U, Nicholas ED (2002) Railway manufacturers implement friction stir welding. Weld J 81:47–50

    Google Scholar 

  37. Ding J, Carter R, Lawless K, Nunes A, Russel C, Suits M, Schneider J (2006) Friction stir welding flies high at NASA. Weld J 85:54–59

    Google Scholar 

  38. Staines DJ, Watts ER, Norris IM (2005) The simultaneous use of two or more friction stir welding tools. TWI web publishing. http://www.twi-global.com/technical-knowledge/published-papers/the-simultaneous-use-of-two-or-more-friction-stir-welding-toolstoolsjanuary-2005/. Accessed 21 November 2016

  39. Thomas WM, Nicholas ED, Watts ER, Staines DG (2002) Friction based welding technology for aluminium. Materials Science Forum 396-402:1543-1548

  40. Kawasaki Heavy Industries, Ltd. (2015) A new method for light alloy joining-Friction spot joining. Kawasaki Heavy Industries, Ltd. web publishing. https://robotics.kawasaki.com/userAssets1/Kawasaki-Friction-Spot-Joining-brochure.pdf. Accessed 21 November 2016

  41. Mortimer J (2005) Jaguar roadmap rethinks self-piercing technology. Industrial Robot–An International Journal 32:209–213

    Article  Google Scholar 

  42. Kohn G, Greenberg Y, Makover I, Munitz A (2002) Laser-assisted friction stir welding. Weld J 81:46–48

    Google Scholar 

  43. Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev 56(1):1–48

    Article  Google Scholar 

  44. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  Google Scholar 

  45. Kwon YJ, Saito N, Shigematsu I (2002) Friction stir process as a new manufacturing technique of ultrafine-grained aluminum alloy. J Mater Sci Lett 21:1473–1476

    Article  Google Scholar 

  46. Heinz B, Skrotzki B (2002) Characterization of a friction stir welded aluminum alloy 6013. Metall Mater Trans B Process Metall Mater Process Sci 33:489–498

    Article  Google Scholar 

  47. Mahoney MW, Rhodes CG, Flintoff JG, Spurling RA, Bingel WH (1998) Properties of friction stir welded 7075 T651 aluminum. Metall Mater Trans A 29:1955–1964

    Article  Google Scholar 

  48. Woo W, Choo H, Brown DW, Feng Z (2007) Influence of the tool pin and shoulder on microstructure and natural aging kinetics in a friction-stir-processed 6061-T6 aluminum alloy. Metall Mater Trans A 38:69–76

    Article  Google Scholar 

  49. Bozkurt Y, Salman S, Çam G (2013) The effect of welding parameters on lap-shear tensile properties of dissimilar friction stir spot welded AA5754-H22/2024-T3 joints. Sci Technol Weld Join 18(4):337–345

    Article  Google Scholar 

  50. İpekoğlu G, Gören Kıral B, Erim S, Çam G (2012) Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates. Mater Tehnol 46(6):627–632

    Google Scholar 

  51. İpekoğlu G, Erim S, Gören Kıral B, Çam G (2013) Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Mater 51(3):155–163

    Google Scholar 

  52. İpekoğlu G, Erim S, Çam G (2014) Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates. Int J Adv Manuf Technol 70(1):201–213

    Google Scholar 

  53. İpekoğlu G, Erim S, Çam G (2014) Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions. Metall Mater Trans A 45A(2):864–877

    Google Scholar 

  54. İpekoğlu G, Çam G (2014) Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metall Mater Trans A 45A(7):3074–3087

    Google Scholar 

  55. Çam G, İpekoğlu G, Serindağ HT (2014) Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Sci Technol Weld Join 19(8):715–720

    Article  Google Scholar 

  56. Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. Int Mater Rev 54:49–93

    Article  Google Scholar 

  57. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction stir welding-process, weldment structure and properties. Prog Mater Sci 53:980–1023

    Article  Google Scholar 

  58. Fratini L, Buffa G, Shivpuri R (2009) In-process heat treatments to improve FS-welded butt joints. Int J Adv Manuf Tech 43:664–670

    Article  Google Scholar 

  59. Fratini L, Buffa G, Shivpuri R (2010) Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Acta Mater 58:2056–2067

    Article  Google Scholar 

  60. Liu HJ, Zhang HJ, Huang YX, Yu L (2010) Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Trans Nonferrous Met Soc China 20:1387–1391

    Article  Google Scholar 

  61. Upadhyay P, Reynolds AP (2010) Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets. Mater Sci Eng A 527:1537–1543

    Article  Google Scholar 

  62. Benavides S, Li Y, Murr LE, Brown D, Mc Cclure JC (1999) Low-temperature friction-stir welding of 2024 aluminum. Scripta Mater 41:809–815

    Article  Google Scholar 

  63. Nelson TW, Steel RJ, Arbegast WJ (2003) In situ thermal studies and post-weld mechanical properties of friction stir welds in age hardenable aluminium alloys. Sci Technol Weld Join 8:283–288

    Article  Google Scholar 

  64. Su JQ, Nelson TW, Sterling CJ (2003) A new route to bulk nanocrystalline materials. J Mater Res 18:1757–1760

    Article  Google Scholar 

  65. Sharma C, Dwivedi DK, Kumar P (2012) Influence of in-process cooling on tensile behavior of friction stir welded joints of AA7039. Mater Sci Eng A 556:479–487

    Article  Google Scholar 

  66. Nair SB, Pahanikumar G, Rao P, Sinah PP (2007) Improvement of mechanical properties of gas tungsten arc and electron beam welded AA2219 (Al-6 wt-%Cu) alloy. Sci Technol Weld Join 12:579–585

    Article  Google Scholar 

  67. Mishra RS, Mahoney MW (eds) (2007) Friction stir welding and processing. ASM International, Materials Park

    Google Scholar 

  68. Reynolds AP (1999) Mechanical and corrosion performance of TGA and friction stir welded aluminum for tailor welded blanks: alloys 5454 and 6061. In: Vitek JM, et al. (eds) Proc. 5th Int. Conf. on Trends in Welding Research. 1–5 June, 1998 (Pine Mountain, GA). ASM International, Materials Park, pp 563–567

  69. Sato YS, Park SHC, Kokowa H (2001) Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloy. Metall Mater Trans A 32:3033–3042

    Article  Google Scholar 

  70. Kumagai M, Tanaka S (2001) Application of friction stir welding to welded construction of aluminum alloys. J Light Met Weld Constr 39:22–28

    Google Scholar 

  71. Svensson LE, Karlsson L, Larsson H, Karlsson B, Fazzini M, Karlsson J (2000) Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082. Sci Technol Weld Join 5:285–296

    Article  Google Scholar 

  72. Jin H, Saimoto S, Ball M, Threadgill PL (2001) Characterisation of microstructure and texture in friction stir welded joints of 5754 and 5182 aluminium alloy sheets. Mater Sci Technol 17:1605–1614

    Article  Google Scholar 

  73. Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51:4791–4801

    Article  Google Scholar 

  74. Hirata T, Oguri T, Hagino H, Tanaka T, Chung SW, Takigawa Y, Higashi K (2007) Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy. Mater Sci Eng A 456:344–349

    Article  Google Scholar 

  75. Etter AL, Baudin T, Fredj N, Penelle R (2007) Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng A 445-446:94–99

    Article  Google Scholar 

  76. Leitao C, Leal RM, Rodrigues DM, Loureiro A, Vilaça P (2009) Mechanical behaviour of similar and dissimilar AA 5182-H111and AA 6016-T4 thin friction stir welds. Mater Des 30:101–108

    Article  Google Scholar 

  77. Von Strombeck A, Cam G, Dos Santos JF, Ventzke V, Kocak M (2001). A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys. Proceedings of TMS 2001 Annual Meeting Aluminum, Automotive and Joining, TMS, New Orleans, pp 249–264

  78. Çam G, Gucluer S, Cakan A, Serindag HT (2009) Mechanical properties of friction stir butt-welded Al-5086 H32 plate. Mat-wiss U Werkstofftech 40(8):638–642

    Article  Google Scholar 

  79. Simoncini M, Forcellese A (2012) Effect of the welding parameters and tool configuration on micro- and macro-mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets. Mater Des 41:50–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürel Çam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çam, G., İpekoğlu, G. Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91, 1851–1866 (2017). https://doi.org/10.1007/s00170-016-9861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9861-0

Keywords

Navigation