Skip to main content
Log in

Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy bead-on-plate welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser–metal inert gas (MIG) welding is a promising welding technology, which presents many attractive properties. However, porosity still remains a serious problem in laser–MIG welding of aluminum. In this experimental study, the effect of leading configuration on porosity formation and distribution in laser–MIG bead-on-plate welding of A7N01 alloy was investigated. Experiments on arc current, welding speed, and arc configuration were performed comparatively for two leading configurations, respectively. The welds were analyzed with X-ray photographs and cross-section observations. Pores in laser–MIG-welded samples were mainly keyhole-induced. The concept of porosity area fraction was used to evaluate the severity of pore defect. The maximum porosity area fraction presented at different arc currents in the two leading configurations (in laser leading welding, it is 150 A, while in arc leading welding, it is 110 A). With welding speed increasing, porosity area fraction decreased. Bubble escape condition was deduced and used to discuss the probable mechanism of the effect of leading configuration on pore formation. The results showed that leading configuration was considerable in porosity minimization and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steen WM, Eboo M (1979) Arc augmented laser-welding. Met Constr-Brit Weld 11(7):332–336

    Google Scholar 

  2. Le Guen E, Fabbro R, Carin M, Coste F, Le Masson P (2011) Analysis of hybrid Nd:Yag laser-MAG arc welding processes. Optics & Laser Technology 43(7):1155–1166. doi:10.1016/j.optlastec.2011.03.002

    Article  MATH  Google Scholar 

  3. Wang J, Wang GZ, Wang CM (2015) Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy. Metalurgija 54(4):683–686

    Google Scholar 

  4. Casalino G, Mortello M, Leo P, Benyounis KY, Olabi AG (2014) Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy. Mater Design 61:191–198. doi:10.1016/j.matdes.2014.04.060

    Article  Google Scholar 

  5. Ola OT, Doern FE (2015) Keyhole-induced porosity in laser-arc hybrid welded aluminum. Int J Adv Manuf Tech 80(1–4):3–10. doi:10.1007/s00170-015-6987-4

    Article  Google Scholar 

  6. Campana G, Ascari A, Fortunato A, Tani G (2009) Hybrid laser-MIG welding of aluminum alloys: the influence of shielding gases. Appl Surf Sci 255(10):5588–5590. doi:10.1016/j.apsusc.2008.07.169

    Article  Google Scholar 

  7. Katayama S, Uchiumi S, Mizutani M, Wang J, Fujii K (2007) Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding. Weld Int 21(1):25–31. doi:10.1533/wint.2007.3680

    Article  Google Scholar 

  8. Wang QY, Chen H, Zhu ZT, Qiu PX, Cui YL (2016) A characterization of microstructure and mechanical properties of A6N01S-T5 aluminum alloy hybrid fiber laser-MIG welded joint. Int J Adv Manuf Tech 86(5–8):1375–1384

    Google Scholar 

  9. Liu S, Li JM, Mi GY, Wang CM, Hu XY (2016) Study on laser-MIG hybrid welding characteristics of A7N01-T6 aluminum alloy. Int J Adv Manuf Tech 87(1–4):1135–1144

    Article  Google Scholar 

  10. Katayama S, Uchiumi S, Briand F (2006) Production of sound deep-penetration hybrid weld in aluminum alloy with YAG laser and MIG arc. Proceedings of the 22nd ICALEO, 953–959

  11. Leo P, Renna G, Casalino G, Olabi AG (2015) Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy. Opt Laser Technol 73:118–126

    Article  Google Scholar 

  12. Kah P, Salminen A, Martikainen J (2010) The effect of the relative location of laser beam with arc in different hybrid welding processes. Mechanika 3:68–74

    Google Scholar 

  13. Zhao L, Sugino T, Arakane G, Tsukamoto S (2009) Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding. Sci Technol Weld Joi 14(5):457–467. doi:10.1179/136217109x434252

    Article  Google Scholar 

  14. Casalino G, Campanelli SL, Dal Maso U, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminium alloy using a fiber laser. Procedia CIRP 12:151–156. doi:10.1016/j.procir.2013.09.027

    Article  Google Scholar 

  15. Katayama S, Mizutani M (2003) Elucidation of laser welding phenomena and porosity formation mechanism (physics, processes, instruments & measurements, international symposium of JWRI 30th anniversary). Trans JWRI 32:67–69

    Google Scholar 

  16. Haboudou A, Peyre P, Vannes AB (2004) Influence of surface preparation and process parameters on the porosity generation in aluminum alloys. J Laser Appl 16(1):20–24. doi:10.2351/1.1619995

    Article  Google Scholar 

  17. AlShaer AW, Li L, Mistry A (2014) The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture. Opt Laser Technol 64:162–171. doi:10.1016/j.optlastec.2014.05.010

    Article  Google Scholar 

  18. Yao W, Gong SL (2011) Porosity formation mechanisms and controlling technique for laser penetration welding. Adv Mater Res-Switz 287-290:2191–2194. doi:10.4028/www.scientific.net/AMR.287-290.2191

    Article  Google Scholar 

  19. Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminium alloys. Int Mater Rev 44(6):238–266. doi:10.1179/095066099101528298

    Article  Google Scholar 

  20. Pang SY, Chen X, Zhou JX, Shao XY, Wang CM (2015) 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt Laser Eng 74:47–58. doi:10.1016/j.optlaseng.2015.05.003

    Article  Google Scholar 

  21. You DY, Gao XD, Katayama S (2015) Detection of imperfection formation in disk laser welding using multiple on-line measurements. J Mater Process Tech 219:209–220. doi:10.1016/j.jmatprotec.2014.12.025

    Article  Google Scholar 

  22. Wei PS, Wu JH, Chao TC, Chen LJ (2014) Keyhole collapse during high intensity beam drilling. Int J Heat Mass Tran 79:300–308. doi:10.1016/j.ijheatmasstransfer.2014.07.070

    Article  Google Scholar 

  23. Gatzen M, Thomy C, Vollertsen F (2012) Analytical investigation of the influence of the spatial laser beam intensity distribution on keyhole dynamics in laser beam welding. Laser Eng 23(1–2):109–122

    Google Scholar 

  24. Zhou J, Tsai HL (2007) Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. Int J Heat Mass Tran 50(11–12):2217–2235. doi:10.1016/j.ijheatmasstransfer.2006.10.040

    Article  MATH  Google Scholar 

  25. Haboudou A, Peyre P, Vannes AB, Peix G (2003) Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mat Sci Eng a-Struct 363(1–2):40–52. doi:10.1016/S0921-5093(03)00637-3

    Article  Google Scholar 

  26. El-Batahgy A, Kutsuna M (2009) Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys. Adv Mater Sci Eng . doi:10.1155/2009/974182Artn 974182

    Google Scholar 

  27. Lisiecki A, Burdzik R, Siwiec G, Konieczny L, Warczek J, Folega P, Oleksiak B (2015) Disk laser welding of car body zinc coated steel sheets. Arch Metall Mater 60(4):2913–2922. doi:10.1515/amm-2015-0465

    Google Scholar 

  28. Ahsan MRU, Kim YR, Kim CH, Kim JW, Ashiri R, Park YD (2016) Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Sci Technol Weld Joi 21(3):209–215. doi:10.1179/1362171815y.0000000084

    Article  Google Scholar 

  29. Chang B, Allen C, Blackburn J, Hilton P (2013) Thermal and fluid flow characteristics and their relationships with porosity in laser welding of AA5083. Physcs Proc 41:471–480. doi:10.1016/j.phpro.2013.03.104

    Google Scholar 

  30. Mohandas T, Banerjee D, Rao VVK (1999) Fusion zone microstructure and porosity in electron beam welds of an alpha plus beta titanium alloy. Metall Mater Trans A 30(3):789–798. doi:10.1007/s11661-999-0071-3

    Article  Google Scholar 

  31. Gao M, Zeng XY, Hu QW, Yan J (2008) Weld microstructure and shape of laser-arc hybrid welding. Sci Technol Weld Joi 13(2):106–113. doi:10.1179/174329307x249388

    Article  Google Scholar 

  32. Zhang KZ, Lei ZL, Chen YB, Liu M, Liu Y (2015) Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15. Opt Laser Technol 73:139–145. doi:10.1016/j.optlastec.2015.04.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Yu, G., He, X. et al. Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy bead-on-plate welding. Int J Adv Manuf Technol 91, 2681–2688 (2017). https://doi.org/10.1007/s00170-016-9917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9917-1

Keywords

Navigation