Skip to main content
Log in

A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Government legislation and public opinion are the main drivers behind the movement of manufacturing companies towards sustainable production. Fundamentally, companies want to avoid future financial penalties and the industry is therefore under pressure to adapt new techniques and practices in order to become environmentally friendly. The cost efficiency of metal cutting operations is highly dependent on accuracy, excellent surface finish and minimized tool wear and, to this end, has traditionally made abundant use of cutting fluid in machining operations. However, these cutting fluids have been a major contributor to environmental and health issues. In recent years, an enormous effort to eradicate these adverse effects has been made with one important focus being the implementation of minimum quantity lubrication (MQL). In the present work, the authors have reviewed the current state of the art in MQL with a particular focus on drilling, turning, milling and grinding machining operations. Overall, it is concluded that MQL has huge potential as a substitute for conventional flood cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amini S, Khakbaz H, Barani A (2015) Improvement of near-dry machining and its effect on tool wear in turning of AISI 4142. Mater Manuf Process 30:241–247

    Article  Google Scholar 

  2. Astakhov V P (2008) “Ecological machining: near-dry machining”, in Machining, ed: Springer London, pp. 195–223

  3. Dureja JS, Singh R, Singh T, Singh P, Dogra M, Bhatti M (2015) Performance evaluation of coated carbide tool in machining of stainless steel (AISI 202) under minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing-Green Technology 2:123–129

    Article  Google Scholar 

  4. Weck M, Koch A (1993) Spindle bearing systems for high-speed applications in machine tools. CIRP Ann Manuf Technol 42(1):445–448

    Article  Google Scholar 

  5. Brinkmeier E, Brockoff T and Walter A (1997) Minimum quantity lubrication in grinding. In: Proceedings of the 2nd International Machining and Grinding Conference, SME, Dearborn, Michigan, pp MR97–MR230

  6. Brokoff T and Walter A (1998), “Fluid minimization in cutting and grinding”, Abrasives, October, pp. 38–42

  7. Document search results for “minimum quantity lubrication” (2016), Scopus (www.scopus.com), Elsevier B.V., Amsterdam, The Netherlands (accessed November 16th 2016).

  8. Huber PR and Werner J (1980), “On minimum oil lubrication of roller bearings”, Schmiertechnik + Tribologie, vol. 27, pp. 90–95

  9. Schemmel H (1980), “Minimum quantity oil lubrication of roller bearings”, Schmiertechnik + Tribologie, vol. 27, pp. 193–196

  10. Nakai H, Ino N, Hashimoto H (1996) Piston-ring lubrication problems for refrigeration compressors considering combined effects of supply oil quantity and surface roughness. J Tribol 118:286–291

    Article  Google Scholar 

  11. Sun J, Liu GS, Xu F, Miao EM, Song XH, Shu L et al (2015) Effect of the lubrication condition at entrance on the lubrication performance of piston ring-cylinder liner frictional pair. Mocaxue Xuebao/Tribology 35:423–430

    Google Scholar 

  12. Brinksmeier E, Walter A, Jansson R, Diersen P (1999) Aspects of cooling lubrication reduction in machining advanced materials. Proc Inst Mech Eng B J Eng Manuf 213(8):769–778

    Article  Google Scholar 

  13. Barczak LM, Batako ADL, Morgan MN (2010) A study of plane surface grinding under minimum quantity lubrication (MQL) conditions. Int J Mach Tools Manuf 50:977–985

    Article  Google Scholar 

  14. Bhowmick S (2011), “Minimum quantity lubrication machining of aluminum and magnesium alloys”, NR61929 Ph.D., University of Windsor (Canada), Ann Arbor

  15. Morgan MN, Barczak L, Batako A (2012) Temperatures in fine grinding with minimum quantity lubrication (MQL). Int J Adv Manuf Technol 60:951–958

    Article  Google Scholar 

  16. Tschätsch H and Reichelt A (2009), “Cutting fluids (coolants and lubricants)”, in Applied machining technology, ed: Springer Berlin Heidelberg, pp. 349–352

  17. Obikawa T, Kamata Y, Asano Y, Nakayama K, Otieno AW (2008) Micro-liter lubrication machining of Inconel 718. Int J Mach Tools Manuf 48:1605–1612

    Article  Google Scholar 

  18. Sharma VS, Dogra M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tools Manuf 49:435–453

    Article  Google Scholar 

  19. Tai BL, Stephenson DA, Furness RJ, Shih AJ (2014) Minimum quantity lubrication (MQL) in automotive powertrain machining. Procedia CIRP 14:523–528

    Article  Google Scholar 

  20. Rahman M, Kumar AS and Manzoor-Ul-Salam (2001) Evaluation of minimal of lubricant in end milling. Int J Adv Manuf Technol 18(4):235–241

  21. Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z (2014) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71:1221–1228

    Article  Google Scholar 

  22. Uysal A, Demiren F, Altan E (2015) Applying minimum quantity lubrication (MQL) method on milling of martensitic stainless steel by using nano Mos2 reinforced vegetable cutting fluid. Procedia - Social and Behavioral Sciences 195:2742–2747

    Article  Google Scholar 

  23. Salaam H, Taha ZB, Shah TMY, Ya T (Nov 2012) Minimum quantity lubrication (MQL) using Ranque-Hilsch vortex tube (RHVT) for sustainable machining. Appl Mech Mater 217-219:2012

    Article  Google Scholar 

  24. Rao DN, Srikant RR, Krishna PV and Subrahmanyam MS (2008), “Nano cutting fluids in minimum quantity lubrication”, in Proceedings of the International Multi-Conference on Engineering and Technological Innovation (IMETI), vol. 1, pp. 60–63, Orlando, U.S.A

  25. Narutaki N, Yamane Y, Tashima S, Kuroki H (1997) A new advanced ceramic for dry machining. Annals of the CIRP 16(1):43–48

    Article  Google Scholar 

  26. Granger C (1994) Dry machining’s double benefit. Machinery and Production Engineering 152:14–20

    Google Scholar 

  27. Feng SC, Hattori M (2000) Cost and process information modeling for dry machining. Proceedings of the International Workshops for Environment Conscious Machining - ICEM 2000:7

    Google Scholar 

  28. Boubekri N, Shaikh V, Foster PR (2010) A technology enabler for green machining: minimum quantity lubrication (MQL). J Manuf Technol Manag 21:556–566

    Article  Google Scholar 

  29. Klocke F, Eisenblätter G (1997) Dry cutting. CIRP Ann Manuf Technol 46:519–526

    Article  Google Scholar 

  30. Hinduja S (2004), Proceedings of the 34th International MATADOR Conference: Formerly The International Machine Tool Design and Research Conferences: Springer London

  31. Freiler C, Hörner D, Buss W, Kubicki F, LoscA, and Mang T (2000), “Lubricants, 7. Metalworking fluids and forming lubricants”, in Ullmann’s encyclopedia of industrial chemistry, ed: Wiley-VCH Verlag GmbH & Co. KGaA

  32. Landgraf G. (2004, January 2004) Dry goods. cutting tool engineering. 4. Available: http://unist.com/pdfs/articles/Dry_Goods.pdf

  33. Stephenson DA and Agapiou JS (2016), p. 947 in Metal cutting theory practice (3rd edition), CRC press

  34. Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101:287–291

    Article  Google Scholar 

  35. Islam MN and Boswell B (2011), “An investigation of surface finish in dry turning”, in Proceedings of the World Congress on Engineering, pp. 6–8

  36. Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44:439–456

    Article  Google Scholar 

  37. Kutz M (ed) (2007) Environmentally Conscious Manufacturing, John Wiley & Sons, Inc., Hoboken

  38. Dasch JM, Ang CC, Wong CA, Cheng YT, Weiner AM, Lev LC et al (2006) A comparison of five categories of carbon-based tool coatings for dry drilling of aluminum. Surf Coat Technol 200:2970–2977

    Article  Google Scholar 

  39. Hadad M, Hadi M (2013) An investigation on surface grinding of hardened stainless steel S34700 and aluminum alloy AA6061 using minimum quantity of lubrication (MQL) technique. Int J Adv Manuf Technol 68:2145–2158

    Article  Google Scholar 

  40. Dixit US, Sarma DK, and Davim JP (2012), “Machining with minimal cutting fluid”, in Environmentally friendly machining, ed: Springer US, pp. 9–17.

  41. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    Article  Google Scholar 

  42. Khan MMA, Dhar NR (2006) Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel. Journal of Zhejiang University SCIENCE A 7:1790–1799

    Article  Google Scholar 

  43. Sales W, Becker M, Barcellos CS, Jr JL, Bonney J, Ezugwu EO (2009) Tribological behaviour when face milling AISI 4140 steel with minimum quantity fluid application. Industrial Lubrication and Tribology 61:84–90

    Article  Google Scholar 

  44. E. A. Rahim and H. Sasahara (2010), “High speed MQL drilling of titanium alloy using synthetic ester and palm oil”, in Proceedings of the 36th International MATADOR Conference, S. Hinduja and L. Li, Eds., ed: Springer London, pp. 193–196

  45. Belluco W, De Chiffre L (2004) Performance evaluation of vegetable-based oils in drilling austenitic stainless steel. J Mater Process Technol 148:171–176

    Article  Google Scholar 

  46. Ginting YR, Boswell B, Biswas W, Islam N (2015) Advancing environmentally conscious machining. Procedia CIRP 26:391–396

    Article  Google Scholar 

  47. Islam MN (2013) Effect of additional factors on dimensional accuracy and surface finish of turned parts. Mach Sci Technol 17:145–162

    Article  Google Scholar 

  48. Ramana MV, Rao GKM, and Rao DH (2011) “Experimental investigations and selection of optimal cutting conditions in turning of Ti-6Al-4V alloy with different cutting fluids by minimum quantity lubrication (MQL) methodology”, i-Manager’s Journal on Mechanical Engineering, vol. 2, pp. 45–52

  49. Tasdelen B, Wikblom T, Ekered S (2008) Studies on minimum quantity lubrication (MQL) and air cooling at drilling. J Mater Process Technol 200:339–346

    Article  Google Scholar 

  50. Braghini Junior A, Diniz A, Filho F (2009) Tool wear and tool life in end milling of 15–5 PH stainless steel under different cooling and lubrication conditions. Int J Adv Manuf Technol 43:756–764

    Article  Google Scholar 

  51. Su Y, He N, Li L (2010) Effect of cryogenic minimum quantity lubrication (CMQL) on cutting temperature and tool wear in high-speed end milling of titanium alloys. Appl Mech Mater 34-35:1816

    Article  Google Scholar 

  52. Kurgin S, Dasch JM, Simon DL, Barber GC, Zou Q (2014) A comparison of two minimum quantity lubrication delivery systems. Industrial Lubrication and Tribology 66:151–159

    Article  Google Scholar 

  53. Zeilmann RP, Weingaertner WL (2006) Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant. J Mater Process Technol 179:124–127

    Article  Google Scholar 

  54. Brinksmeier E, Janssen R (2002) Drilling of multi-layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys. CIRP Ann Manuf Technol 51:87–90

    Article  Google Scholar 

  55. Brinksmeier E, Pecat O and Rentsch R (2015) Quantitative analysis of chip extraction in drilling of Ti6Al4V. CIRP Ann Manuf Technol 64(1):93–96

  56. Sreejith PS (2008) Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater Lett 62:276–278

    Article  Google Scholar 

  57. Yoshimura H, Moriwaki T, Ohmae N, Nakai T, Shibasaka T, Kinoshita H et al (2006) Study on near dry machining of aluminum alloys. JSME Int J Ser C Mech Syst Mach Elem Manuf 49:83–89

    Article  Google Scholar 

  58. Yan J, Murakami Y, and Davim JP (2009) “Tool design, tool wear and tool life”, in Machining Dynamics, K. Cheng, Ed., ed: Springer London, pp. 117–149

  59. Tsao CC (2007) An experiment study of hard coating and cutting fluid effect in milling aluminum alloy. Int J Adv Manuf Technol 32:885–891

    Article  Google Scholar 

  60. de Lacalle LNL, Lamikiz A, Sanchez JA, Cabanes I (2001) Cutting conditions and tool optimization in the high-speed milling of aluminium alloys. Proceedings of the Institution of Mechanical Engineers 215:1257

    Article  Google Scholar 

  61. Diciuc V, Lobontiu M, Bran G, Lazar V (2013) The influence of the lubrication method and the cutting regime on the surface roughness when milling 7175 aluminum alloy. Appl Mech Mater 371:28

    Article  Google Scholar 

  62. Sohrabpoor H, Khanghah S, Teimouri R (2015) Investigation of lubricant condition and machining parameters while turning of AISI 4340. Int J Adv Manuf Technol 76:2099–2116

    Article  Google Scholar 

  63. Dhar NR, Islam MW, Islam S, Mithu MAH (2006) The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J Mater Process Technol 171:93–99

    Article  Google Scholar 

  64. Dhar NR, Ahmed MT, Islam S (2007) An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tools Manuf 47:748–753

    Article  Google Scholar 

  65. Dhar NR, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J Mater Process Technol 172:299–304

    Article  Google Scholar 

  66. Rahman M, Senthil Kumar A, Salam MU (2002) Experimental evaluation on the effect of minimal quantities of lubricant in milling. Int J Mach Tools Manuf 42:539–547

    Article  Google Scholar 

  67. da Silva LC, da Mota PR, da Silva MB, Ezugwu EO, Machado ÁR (2015) Study of burr behavior in face milling of PH 13-8 Mo stainless steel. CIRP J Manuf Sci Technol 8:34–42

    Article  Google Scholar 

  68. Priarone PC, Robiglio M, Settineri L, Tebaldo V (2014) Milling and turning of titanium aluminides by using minimum quantity lubrication. Procedia CIRP 24:62–67

    Article  Google Scholar 

  69. Aryasomayajula A, U. o. Arkansas (2008) Low temperature alpha alumina thin film coating for cutting tool application by AC inverted magnetron sputtering technique. University of Arkansas

  70. Graham D (2002) Turning difficult-to-machine alloys. Modern Machine Shop 75:92

    Google Scholar 

  71. Lorincz J (2015) The heat is on difficult-to-machine metals. Manuf Eng 154:55–64

    Google Scholar 

  72. Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)-theory to application. Mach Sci Technol 19:1–49

    Article  Google Scholar 

  73. Park K-H, Yang G-D, Lee M-G, Jeong H, Lee S-W, Lee D (2014) Eco-friendly face milling of titanium alloy. Int J Precis Eng Manuf 15:1159–1164

    Article  Google Scholar 

  74. Wang ZG, Rahman M, Wong YS, Neo KS, Sun J, Tan CH et al (2009) Study on orthogonal turning of titanium alloys with different coolant supply strategies. Int J Adv Manuf Technol 42:621–632

    Article  Google Scholar 

  75. Boswell B, Islam MN (2016) Sustainable cooling method for machining titanium alloy. IOP Conference Series: Materials Science and Engineering 114:012021

    Article  Google Scholar 

  76. Kaynak Y, Lu T, Jawahir IS (2014) Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Mach Sci Technol 18:149–198

    Article  Google Scholar 

  77. (2014, May 13). MONEL alloy K-500 marine alloy QQ-N-286(UNS N05500) Ni 65.5 Cu 29.5 Al 2.7, Ti 0.6 description [Online]. Available: http://www.hpalloy.com/Alloys/descriptions/MONELK_500.aspx

  78. Javam N (2013) The study of high speed turning using MQL. Indian Journal of Science and Technology 6:4123–4127

    Google Scholar 

  79. Sharma J, Sidhu BS (2014) Investigation of effects of dry and near dry machining on AISI D2 steel using vegetable oil. J Clean Prod 66:619–623

    Article  Google Scholar 

  80. Beno T, Isaksson M, Pejryd L (2007) Investigation of minimal quantity lubrication in turning of Waspaloy. In: Takata S, Umeda Y (eds) Advances in life cycle engineering for sustainable manufacturing businesses. Springer, London, pp 305–310

    Chapter  Google Scholar 

  81. Park KH, Suhaimi MA, Yang GD, Lee DY, Lee SW, Kwon P (2017) Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int J Precis Eng Manuf 18:5–14

    Article  Google Scholar 

  82. Thamizhmanii RSHS (2009) A study of minimum quantity lubrication on Inconel 718 steel. International Scientific Journal 39:38–44

    Google Scholar 

  83. Biermann D, Iovkov I (2015) Investigations on the thermal workpiece distortion in MQL deep hole drilling of an aluminium cast alloy. CIRP Annals-Manufacturing Technology 64:85–88

    Article  Google Scholar 

  84. Bhowmick S, Alpas AT (2008) Minimum quantity lubrication drilling of aluminium–silicon alloys in water using diamond-like carbon coated drills. Int J Mach Tools Manuf 48:1429–1443

    Article  Google Scholar 

  85. Fox-Rabinovich G, Dasch JM, Wagg T, Yamamoto K, Veldhuis S, Dosbaeva GK et al (2011) Cutting performance of different coatings during minimum quantity lubrication drilling of aluminum silicon B319 cast alloy. Surf Coat Technol 205:4107–4116

    Article  Google Scholar 

  86. Davim JP, Sreejith PS, Gomes R, Peixoto C (2006) Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions. Proceedings of the Institution of Mechanical Engineers B, Journal of Engineering Manufacture 220:1605–1611

    Article  Google Scholar 

  87. Braga DU, Diniz AE, Miranda GWA, Coppini NL (2002) Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys. J Mater Process Technol 122:127–138

    Article  Google Scholar 

  88. Shingarwade RU, Chavan PS (2014) A review on MQL in reaming. International Journal of Mechanical Engineering and Robotics Research 3:392–398

    Google Scholar 

  89. Zeilmann R, Nicola G, Vacaro T, Teixeira C, Heiler R (2012) Implications of the reduction of cutting fluid in drilling AISI P20 steel with carbide tools. Int J Adv Manuf Technol 58:431–441

    Article  Google Scholar 

  90. Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tools Manuf 46:1–6

    Article  Google Scholar 

  91. Meena A, El Mansori M (2011) Study of dry and minimum quantity lubrication drilling of novel austempered ductile iron (ADI) for automotive applications. Wear 271:2412–2416

    Article  Google Scholar 

  92. Brinksmeier E, Pecat O, Rentsch R (2015) Quantitative analysis of chip extraction in drilling of Ti 6 Al 4 V. CIRP Annals-Manufacturing Technology 64:93–96

    Article  Google Scholar 

  93. Di Ilio A, Paoletti A, Tagliaferri V, Veniali F (1996) An experimental study on grinding of silicon carbide reinforced aluminium alloys. Int J Mach Tools Manuf 36:673–685

    Article  Google Scholar 

  94. J. R. Davis, J. R. D. Associates, and A. S. M. I. H (1993) Committee, aluminum and aluminum alloys: ASM International

  95. Islam MN, Pramanik A, Basak A, and Littlefair G (2013) “Machining and tool wear mechanisms during machining titanium alloys”

  96. Yuan SX, Bi B (2009) Experimental study on the belt grinding mechanism for aluminum alloys. Appl Mech Mater 16-19:60

    Article  Google Scholar 

  97. Hadad M, Sadeghi B (2012) Thermal analysis of minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 63:1–15

    Article  Google Scholar 

  98. Shao Y, Fergani O, Li B, Liang S (2015) Residual stress modeling in minimum quantity lubrication grinding. Int J Adv Manuf Technol:1–9

  99. Mao C, Tang X, Zou H, Zhou Z, Yin W (2012) Experimental investigation of surface quality for minimum quantity oil–water lubrication grinding. Int J Adv Manuf Technol 59:93–100

    Article  Google Scholar 

  100. Hadad MJ, Tawakoli T, Sadeghi MH, Sadeghi B (2012) Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 54–55:10–17

    Article  Google Scholar 

  101. Hogan BJ (2011) Grinding difficult materials. Manuf Eng 146(2):71–77

  102. Sadeghi MH, Haddad MJ, Tawakoli T, Emami M (2009) Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy. Int J Adv Manuf Technol 44:487–500

    Article  Google Scholar 

  103. Setti D, Ghosh S, and Rao PV (2012) “Application of nano cutting fluid under minimum quantity lubrication (MQL) technique to improve grinding of Ti - 6Al - 4V alloy”, Çanakkale, pp. 512–516

  104. An Q, Fu Y, Xu J (2010) A new technology on enhancing heat transfer during grinding of titanium alloy. Industrial Lubrication and Tribology 62:168–173

    Article  Google Scholar 

  105. Maruda RW, Krolczyk GM, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A (2016) A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tools Manuf 100:81–92

    Article  Google Scholar 

  106. Gupta M, Singh G, Sood P (2015) Experimental investigation of machining AISI 1040 medium carbon steel under cryogenic machining: a comparison with dry machining. Journal of The Institution of Engineers (India): Series C 96:373–379

    Article  Google Scholar 

  107. H. Tönshoff and B. Denkena, “Cooling lubrication”, in Basics of cutting and abrasive processes, ed: Springer Berlin Heidelberg, 2013, pp. 371–396.

  108. Kalita P, Malshe AP, Arun Kumar S, Yoganath VG, Gurumurthy T (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14:160–166

    Article  Google Scholar 

  109. Kalita P, Malshe AP, Rajurkar KP (2012) Study of tribo-chemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding. CIRP Ann Manuf Technol 61:327–330

    Article  Google Scholar 

  110. Davis B, Schueller JK, Huang Y (2015) Study of ionic liquid as effective additive for minimum quantity lubrication during titanium machining. Manufacturing Letters 5:1–6

    Article  Google Scholar 

  111. Goindi GS, Chavan SN, Mandal D, Sarkar P, Jayal AD (2015) Investigation of ionic liquids as novel metalworking fluids during minimum quantity lubrication machining of a plain carbon steel. Procedia CIRP 26:341–345

    Article  Google Scholar 

  112. Pham M-Q, Yoon H-S, Khare V, Ahn S-H (2014) Evaluation of ionic liquids as lubricants in micro milling—process capability and sustainability. J Clean Prod 76:167–173

    Article  Google Scholar 

  113. Krajnik P, Pusavec F, Rashid A (2011) Nanofluids: properties, applications and sustainability aspects in materials processing technologies. In: Seliger G, Khraisheh MMK, Jawahir IS (eds) Advances in sustainable manufacturing. Springer, Berlin Heidelberg, pp 107–113

    Chapter  Google Scholar 

  114. Zhang D, Li C, Zhang Y, Jia D, Zhang X (2015) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78:1275–1288

    Article  Google Scholar 

  115. Hemmat Esfe M, Karimipour A, Yan W-M, Akbari M, Safaei MR, Dahari M (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf 88:728–734

    Article  Google Scholar 

  116. Fedele L, Colla L, Bobbo S (2012) Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig 35:1359–1366

    Article  Google Scholar 

  117. Arulprakasajothi M, Elangovan K, Reddy KH, Suresh S (2015) Heat transfer study of water-based nanofluids containing titanium oxide nanoparticles. Materials Today: Proceedings 2:3648–3655

    Article  Google Scholar 

  118. Li X, Zou C, Lei X, Li W (2015) Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf 89:613–619

    Article  Google Scholar 

  119. Karimi A, Sadatlu MAA, Saberi B, Shariatmadar H and Ashjaee M (2015) Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Adv Powder Technol 26(6):1529–1536

  120. Yu W, Xie H, Li Y, Chen L, Wang Q (2011) Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids Surf A Physicochem Eng Asp 380:1–5

    Article  Google Scholar 

  121. Peng DX, Kang Y, Hwang RM, Shyr SS, Chang YP (2009) Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol Int 42:911–917

    Article  Google Scholar 

  122. Tang Z, Li S (2014) A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr Opinion Solid State Mater Sci 18:119–139

    Article  Google Scholar 

  123. Sharma AK, Tiwari AK, Dixit AR (2015) Mechanism of nanoparticles functioning and effects in machining processes: a review. Materials Today: Proceedings 2:3539–3544

    Article  Google Scholar 

  124. Xie H, Jiang B, He J, Xia X and Pan F (2016) Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol Int 93:63–70

  125. Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257:5720–5725

    Article  Google Scholar 

  126. Peña-Parás L, Taha-Tijerina J, Garza L, Maldonado-Cortés D, Michalczewski R, Lapray C (2015) Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear 332–333:1256–1261

    Article  Google Scholar 

  127. Su Y, Gong L, Li B, Liu Z, Chen D (2015) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol:1–7

  128. Rahmati B, Sarhan AAD, Sayuti M (2014) Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Clean Prod 66:685–691

    Article  Google Scholar 

  129. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf 99:19–33

    Article  Google Scholar 

  130. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  Google Scholar 

  131. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  Google Scholar 

  132. Chaturvedi DA, Jain DP, and Malik DS (2012) “Study of nano technology based solid lubricant”, vol. 3, pp. 31–32

  133. “Nanotechnology Work Health & Safety (2013)”, E. Australia, Ed., ed. Australia

  134. Seyedmahmoudi SH, Harper S, Weismiller M, Haapala K (2015) Evaluating the use of zinc oxide and titanium dioxide nanoparticles in a metalworking fluid from a toxicological perspective. J Nanopart Res 17:1–12

    Article  Google Scholar 

  135. Kamimura H, Kubo T, Minami I, Mori S (2007) Effect and mechanism of additives for ionic liquids as new lubricants. Tribol Int 40:620–625

    Article  Google Scholar 

  136. Cai M, Zhao Z, Liang Y, Zhou F, Liu W (2010) Alkyl imidazolium ionic liquids as friction reduction and anti-wear additive in polyurea grease for steel/steel contacts. Tribol Lett 40:215–224

    Article  Google Scholar 

  137. Battez AH, González R, Viesca JL, Blanco D, Asedegbega E, Osorio A (2009) Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266:1224–1228

    Article  Google Scholar 

  138. Jiménez AE, Bermúdez MD, Carrión FJ, Martínez-Nicolás G (2006) Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261:347–359

    Article  Google Scholar 

  139. Jiménez A-E, Bermúdez M-D (2008) Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium–steel lubrication. Wear 265:787–798

    Article  Google Scholar 

  140. Han Y, Qiao D, Zhang L, Feng D (2015) Study of tribological performance and mechanism of phosphonate ionic liquids for steel/aluminum contact. Tribol Int 84:71–80

    Article  Google Scholar 

  141. Jiménez A, Bermúdez M-D (2009) Ionic liquids as lubricants of titanium–steel contact. Tribol Lett 33:111–126

    Article  Google Scholar 

  142. Jiménez AE, Bermúdez MD (2010) Ionic liquids as lubricants of titanium–steel contact. Part 2: friction, wear and surface interactions at high temperature. Tribol Lett 37:431–443

    Article  Google Scholar 

  143. Libardi A, Schmid SR, Sen M, Schneider W (2013) Evaluation of ionic fluids as lubricants in manufacturing. J Manuf Process 15:414–418

    Article  Google Scholar 

  144. Keskin S, Kayrak-Talay D, Akman U, Hortaçsu Ö (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids 43:150–180

    Article  Google Scholar 

  145. Frade RFM, Afonso CAM (2010) Impact of ionic liquids in environment and humans: an overview. Hum Exp Toxicol 29:1038–1054

    Article  Google Scholar 

  146. Mulkiewicz E, Stepnowski P (2014) Recent developments in ionic liquid toxicity assessment. International Journal of Cognitive Linguistics 13:391–428

    Google Scholar 

  147. Stepnowski P, Skladanowski AC, Ludwiczak A, Laczynska E (2004) Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum Exp Toxicol 23:513–517

    Article  Google Scholar 

  148. Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206

    Article  Google Scholar 

  149. Kulacki KJ (2009), “Proactive aquatic ecotoxicology: a hazard assessment of room-temperature ionic liquids”, 3436462 Ph.D., University of Notre Dame, Ann Arbor

  150. Heisel U, Schaal M, Wolf G (2010) Influence of minimum quantity lubrication on burr formation in milling. In: Aurich JC, Dornfeld D (eds) Burrs - analysis, control and removal. Springer, Berlin Heidelberg, pp 139–146

    Chapter  Google Scholar 

  151. Faverjon P, Rech J, Valiorgue F, Orset M (2015) Optimization of a drilling sequence under MQL to minimize the thermal distortion of a complex aluminum part. Prod Eng 9:505–515

    Article  Google Scholar 

  152. Stephenson DA, Skerlos SJ, King AS, Supekar SD (2014) Rough turning Inconel 750 with supercritical CO2-based minimum quantity lubrication. J Mater Process Technol 214:673–680

    Article  Google Scholar 

  153. Boswell B and Islam MN (2013) The challenge of adopting minimal quantities of lubrication for end milling aluminium. In: Yang G-C, Ao S-1, Gelman L (eds) IAENG transactions on engineering technologies, vol 229. Springer, Dordrecht, pp 713–724

  154. Duchosal A, Werda S, Serra R, Leroy R, Hamdi H (2015) Numerical modeling and experimental measurement of MQL impingement over an insert in a milling tool with inner channels. Int J Mach Tools Manuf 94:37–47

    Article  Google Scholar 

  155. Kırmacı V (2009) Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air. Int J Refrig 32:1626–1633

    Article  Google Scholar 

  156. Dutta T, Sinhamahapatra KP, Bandyopdhyay SS (2010) Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. Int J Refrig 33:783–792

    Article  Google Scholar 

  157. Selek M, Tasdemir S, Dincer K, Baskaya S (2011) Experimental examination of the cooling performance of Ranque-Hilsch vortex tube on the cutting tool nose point of the turret lathe through infrared thermography method. Int J Refrig 34:807–815

    Article  Google Scholar 

  158. Mohamad A, Amin NAM, Razlan ZM, Majid MSA (2013) Experimental studies of a Ranque-Hilsch vortex tube. Appl Mech Mater 390:670

    Article  Google Scholar 

  159. Dincer K, Tasdemir S, Baskaya S, Uysal BZ (2008) Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque–Hilsch vortex tubes using artificial neural networks. Appl Therm Eng 28:2380–2390

    Article  Google Scholar 

  160. Agrawal N, Naik SS, and Gawale YP (2014), “Experimental investigation of vortex tube using natural substances”, International Communications in Heat and Mass Transfer, vol. 52, pp. 51–55, 3//

  161. Yalçın B, Özgür AE, Koru M (2009) The effects of various cooling strategies on surface roughness and tool wear during soft materials milling. Mater Des 30:896–899

    Article  Google Scholar 

  162. Liu J, Kevin Chou Y (2007) On temperatures and tool wear in machining hypereutectic Al–Si alloys with vortex-tube cooling. Int J Mach Tools Manuf 47:635–645

    Article  Google Scholar 

  163. Balmer RT (1988) Pressure-driven Ranque-Hilsch temperature separation in liquids. J Fluids Eng 110:161–164

    Article  Google Scholar 

  164. Chowdhury SA, Islam MN and Boswell B (2015) Predicting the influence of the machining parameters on the tool tip temperature. In: Yang G-C, Ao S-I, Gelman L (eds) Transactions on engineering technologies. Springer, Dordrecht, pp 305–316

  165. Zhang S, Li J, Lv H (2014) Tool wear and formation mechanism of white layer when hard milling H13 steel under different cooling/lubrication conditions. Advances in Mechanical Engineering

  166. Su Y, He N, Li L, Iqbal A, Xiao MH, Xu S et al (2007) Refrigerated cooling air cutting of difficult-to-cut materials. Int J Mach Tools Manuf 47:927–933

    Article  Google Scholar 

  167. Ravi S, Pradeep Kumar M (2011) Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel. Cryogenics 51:509–515

    Article  Google Scholar 

  168. Huang X, Zhang X, Mou H, Zhang X, Ding H (2014) The influence of cryogenic cooling on milling stability. J Mater Process Technol 214:3169–3178

    Article  Google Scholar 

  169. Dhar NR, Nanda Kishore SV, Paul S, Chattopadhyay AB (2002) The effects of cryogenic cooling on chips and cutting forces in turning AISI 1040 and AISI 4320 steels. Proceedings of the Institution of Mechanical Engineers 216:713

    Article  Google Scholar 

  170. Venugopal KA, Tawade R, Prashanth PG, Paul S, Chattopadhyay AB (2003) Turning of titanium alloy with TiB2-coated carbides under cryogenic cooling. Proceedings of the Institution of Mechanical Engineers 217:1697–1707

    Article  Google Scholar 

  171. Dix M, Wertheim R, Schmidt G, Hochmuth C (2014) Modeling of drilling assisted by cryogenic cooling for higher efficiency. CIRP Ann Manuf Technol 63:73–76

    Article  Google Scholar 

  172. Manimaran G, Pradeep Kumar M, Venkatasamy R (2014) Influence of cryogenic cooling on surface grinding of stainless steel 316. Cryogenics 59:76–83

    Article  Google Scholar 

  173. Yuan SM, Yan LT, Liu WD, Liu Q (2011) Effects of cooling air temperature on cryogenic machining of Ti–6Al–4V alloy. J Mater Process Technol 211:356–362

    Article  Google Scholar 

  174. Zou LT, Zhang S, Zhang Q (2012) Computer fluid dynamics analysis of cryogenic oil mist and structural optimization of spraying nozzle. Appl Mech Mater 241-244:1310

    Article  Google Scholar 

  175. Sanchez JA, Pombo I, Alberdi R, Izquierdo B, Ortega N, Plaza S et al (2010) Machining evaluation of a hybrid MQL-CO2 grinding technology. J Clean Prod 18:1840–1849

    Article  Google Scholar 

  176. García E, Méresse D, Pombo I, Dubar M, Sánchez JA (2015) Role of frozen lubricant film on tribological behaviour and wear mechanisms in grinding. Int J Adv Manuf Technol:1–11

  177. Clarens AF, Hayes KF, Skerlos SJ (2006) Feasibility of metalworking fluids delivered in supercritical carbon dioxide. J Manuf Process 8:47–53

    Article  Google Scholar 

  178. “Greenhouse Gases” 2008, P. o. Australia, Ed., ed. Australua

  179. Mon TT, Ramli J, Jeefferie AR, Sharif S, Venkatesh VC (2011) Performance of cryogenic machining with nitrogen gas in machining of titanium. Appl Mech Mater 52-54:2003

    Article  Google Scholar 

  180. Lozowski D (2010) Supercritical CO2: a green solvent. Chem Eng 117:15–18

    Google Scholar 

  181. Supekar SD, Clarens AF, Stephenson DA, Skerlos SJ (2012) Performance of supercritical carbon dioxide sprays as coolants and lubricants in representative metalworking operations. J Mater Process Technol 212:2652–2658

    Article  Google Scholar 

  182. Ekvall T, Weidema B (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9:161–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.N. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boswell, B., Islam, M., Davies, I.J. et al. A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int J Adv Manuf Technol 92, 321–340 (2017). https://doi.org/10.1007/s00170-017-0142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0142-3

Keywords

Navigation