Skip to main content
Log in

EEMD-based online milling chatter detection by fractal dimension and power spectral entropy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2020

This article has been updated

Abstract

Chatter is a kind of self-excited unstable vibration during machining process, which always leads to multiple negative effects such as poor surface quality, dimension accuracy error, excessive noise, and tool wear. For purposes of monitoring the processing state of milling process and detecting chatter timely, a novel online chatter detection method was proposed. In the proposed method, the acceleration signals acquired by sensor were decomposed into a series of intrinsic mode functions (IMFs) by the adaptive analysis method named ensemble empirical mode decomposition (EEMD), and the IMFs which contain the feature information of milling process were selected as the analyzed signals. The two indicators power spectral entropy and fractal dimension which is obtained by morphological covering method are introduced to detect the chatter features. Then, both the frequency characteristic and morphological feature of the extracted signals can be reflected by the two indicators. To verify the approach, milling experiments were performed; the experiment results show that the proposed method can detect chatter timely and effectively, which is important in the aspect of improving the milling quality. And finally, in order to detect milling chatter timely, an online milling chatter monitoring system was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 20 October 2020

    The original version of this article contained mistakes.

Reference

  1. Wiercigroch M, Krivtsov AM (2001) Frictional chatter in orthogonal metal cutting. Philosophical Transactions: Mathematical Physical and Engineering Sciences (Series A) 359(1781):713–738. doi:10.1098/rsta.2000.0752

    Article  MATH  Google Scholar 

  2. Wiercigroch M, Budak E (2001) Sources of nonlinearities, chatter generation and suppression in metal cutting. Philosophical Transactions of the Royal Society London 359(1781):663–693. doi:10.1098/rsta.2000.0750

    Article  MATH  Google Scholar 

  3. Tlusty J, Polacek M (1963) The stability of machine tools against self-excited vibrations in machining, international research in production engineering. Mach Sci and Technol 465–474

  4. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. doi:10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  5. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362

    Article  Google Scholar 

  6. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  7. Gradisek J, Kalveram M, Insperger T, Weinert K, Stepan G, Govekar E, Grabec I (2005) On stability prediction for milling. Int J Mach Tools Manuf 45(7–8):769–781. doi:10.1016/j.ijmachtools.2004.11.015

    Article  Google Scholar 

  8. Mann BP, Young KA, Schmitz TL, Dilley DN (2005) Simultaneous stability and surface location error predictions in milling. J Manuf Sci E-T ASME 127(3):446–453. doi:10.1115/1.1948394

    Article  Google Scholar 

  9. Minis I, Yanushevsky R (1993) A new theoretical approach for the prediction of machine tool chatter in milling. J Eng Ind-Trans ASME 115(1):1–8. doi:10.1115/1.2901633

    Article  Google Scholar 

  10. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. ASME J Dyn Syst Meas Control 120(1):22–30. doi:10.1115/1.2801317

    Article  Google Scholar 

  11. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng.-Trans ASME 126(3):459–466. doi:10.1115/1.1765139

    Article  Google Scholar 

  12. Altintas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. J Manuf Sci Eng-Trans ASME 121(2):173–178. doi:10.1115/1.2831201

    Article  Google Scholar 

  13. Altintas Y (2001) Analytical prediction of three dimensional chatter stability in milling. JSME Int J Ser C 44(3):717–723

    Article  Google Scholar 

  14. Butcher EA, Ma HT, Bueler E, Averina V, Szabo Z (2004) Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int J Numer Methods Eng 59(7):895–922. doi:10.1002/nme.894

    Article  MathSciNet  MATH  Google Scholar 

  15. Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009) Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlinear Dyn 4(3):031003:1–03100312. doi:10.1115/1.3124088

    Article  Google Scholar 

  16. Khasawneh FA, Bobrenkov OA, Mann BP, Butcher EA (2012) Investigation of period-doubling islands in milling with simultaneously engaged helical flutes. J Vib Acoust-Trans ASME 134(2):1–9. doi:10.1115/1.4 005022

    Article  Google Scholar 

  17. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509. doi:10.1016/j.ijmachtools.2010.01.003

    Article  Google Scholar 

  18. Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62:61–66. doi:10.1016/j.ijmachtools.2012.05.001

    Article  Google Scholar 

  19. Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 63:44–48. doi:10.1016/j.ijmachtools.2012.07.008

    Article  Google Scholar 

  20. Abellan-Nebot JV, Subirón FR (2010) A review of machining monitoring systems based on artificial intelligence process models. Int J Adv Manuf Technol 47(1–4):237–257. doi:10.1007/s00170-009-2191-8

    Article  Google Scholar 

  21. Lamraoui M, Thomas M, El Badaoui M, Girardin F (2014a) Indicators for monitoring chatter in milling based on instantaneous angular speeds. Mech Syst Signal Proc 44(1–2):72–85. doi:10.1016/j.ymssp.2013.05.002

    Article  Google Scholar 

  22. Lamraoui M, Thomas M, El Badaoui M (2014b) Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech Syst Signal Proc 44(1–2):177–198. doi:10.1016/j.ymssp.2013.05.001

    Article  Google Scholar 

  23. Thaler T, Potočnik P, Bric I, Govekar E (2014) Chatter detection in band sawing based on discriminant analysis of sound features. Appl Acoust 77:114–121. doi:10.1016/j.apacoust.2012.12.004

    Article  Google Scholar 

  24. Huang PL, Li JF, Sun J, Zhou J (2013) Vibration analysis in milling titanium alloy based on signal processing of cutting force. Int J Adv Manuf Technol 64(5–8):613–621. doi:10.1007/s00170-012-4039-x

    Article  Google Scholar 

  25. Tangjitsitcharoen S, Pongsathornwiwat N (2013) Development of chatter detection in milling processes. Int J Adv Manuf Technol 65(5–8):919–927. doi:10.1007/s00170-012-4228-7

    Article  Google Scholar 

  26. Tansel IN, Li M, Demetgul M, Bickraj K, Kaya B, Ozcelik B (2012) Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR). Int J Adv Manuf Technol 58(1–4):109–118. doi:10.1007/s00170-010-2838-5

    Article  Google Scholar 

  27. Liu Y, Wang XF, Lin J, Zhao W (2016) Early chatter detection in gear grinding process using servo feed motor current. Int J Adv Manuf Technol 83(9–12):1801–1810. doi:10.1007/s00170-015-7687-9

    Article  Google Scholar 

  28. Weng JW, Zhong JG (2003) Application of Gabor transform to 3-D shape analysis. Acta Photonica Sinica 32(08):993–996

    Google Scholar 

  29. Postnikov EB, Lebedeva EA, Lavrova AI (2016) Computational implementation of the inverse continuous wavelet transform without a requirement of the admissibility condition. Appl Math Comput 282:128–136. doi:10.1016/j.amc.2016.02.013

    MathSciNet  Google Scholar 

  30. Staszewski WJ, Worden K, Tomlinson GR (1997) Time-frequency analysis in gearbox fault detection using the Wigner-Ville distribution and pattern recognition. Mech Syst Signal Proc 11(5):673–692. doi:10.1006/mssp.1997.0102

    Article  Google Scholar 

  31. Pachori RB, Nishad A (2016) Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform. Signal Process 120:288–304. doi:10.1016/j.sigpro.2015.07.026

    Article  Google Scholar 

  32. Fu Y, Zhang Y, Zhou HM, Li DQ, Liu HQ, Qiao HY, Wang XQ (2016) Timely online chatter detection in end milling process. Mech Syst Signal Proc 75:668–688. doi:10.1016/j.ymssp.2016.01.003

    Article  Google Scholar 

  33. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng QA, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang NE, Wu ZH (2008) A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev Geophys 46(2):1–23. doi:10.1029/2007RG000228

    Article  Google Scholar 

  35. Wu ZH, Huang NE (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv Adapt Data Anal 1(1):1–41. doi:10.1142/S1793536909000047

    Article  Google Scholar 

  36. Liu H, Tian HQ, Liang XF, Li YF (2015) New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew Energy 83:1066–1075. doi:10.1016/j.renene.2015.06.004

    Article  Google Scholar 

  37. Wang SX, Zhang N, Wu L, Wang YM (2016) Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew Energy 94:629–636. doi:10.1016/j.renene.2016.03.103

    Article  Google Scholar 

  38. Xian L, He KJ, Lai KK (2016) Gold price analysis based on ensemble empirical model decomposition and independent component analysis. Physica A 454:11–23. doi:10.1016/j.physa.2016.02.055

    Article  Google Scholar 

  39. Yang CY, Wu TY (2015) Diagnostics of gear deterioration using EEMD approach and PCA process. Measurement 61:75–87. doi:10.1016/j.measurement.2014.10.026

    Article  MathSciNet  Google Scholar 

  40. Tabrizi A, Garibaldi L, Fasana A, Marchesiello S (2015) Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine. Meccanica 50(3):865–874. doi:10.1007/s11012-014-9968-z

    Article  Google Scholar 

  41. Žvokelj M, Zupan S, Prebil I (2016) EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. J Sound Vibr 370:394–423. doi:10.1016/j.jsv.2016.01.046

    Article  Google Scholar 

  42. Xu J, Wang ZB, Tan C, Si L, Liu XH (2015) A cutting pattern recognition method for shearers based on improved ensemble empirical mode decomposition and a probabilistic neural network. Sensors 15(11):27721–27737. doi:10.3390/s151127721

    Article  Google Scholar 

  43. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61:27–47. doi:10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  44. Gray RM (2009) Entropy and information theory. Springer-Verlag, New York

    Google Scholar 

  45. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York

    MATH  Google Scholar 

  46. Mandelbrot BB (2006) Fractal analysis and synthesis of fracture surface roughness and related forms of complexity and disorder. Int J Fract 138(1–4):13–17. doi:10.1007/s10704-006-0037-z

    Article  MATH  Google Scholar 

  47. Bramowicz M, Braic L, Azem FA, Kulesza S, Birlik I (2016) Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings. Appl Surf Sci 379:338–346. doi:10.1016/j.Apsusc.2016.04.077

    Article  Google Scholar 

  48. Liu SC, Chang S (1997) Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Trans Image Process 6(8):1176–1184. doi:10.1109/83.605414

    Article  Google Scholar 

  49. Neil G, Curtis KM (1997) Shape recognition using fractal geometry. Pattern Recogn 30(12):1957–1969. doi:10.1016/S0031-3203(96)00193-8

    Article  Google Scholar 

  50. Lin KH, Lam KM, Siu WC (2001) Locating the eye in human face images using fractal dimensions. IEE Proc-Vis Image Signal Process 148(6):413–421. doi:10.1049/ip-vis:20010709

    Article  Google Scholar 

  51. Sarker N, Chaudhuri BB (1994) An efficient differential box-counting approach to compute fractal dimension of image. IEEE Transactions on Systems, Man, and Cybernetics 24(1):115–120. doi:10.1109/21.259692

    Article  Google Scholar 

  52. Maragos P, Sun FK (1993) Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Trans Signal Process 41(1):108–121. doi:10.1109/TSP.1993.193131

    Article  MATH  Google Scholar 

  53. Cao HR, Zhou K, Ghen XF (2015) Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. Int J Mach Tools Manuf 92:52–59. doi:10.1016/j.ijmachtools.2015.03.002

    Article  Google Scholar 

  54. Shen JL, Hung JW, Lee LS (1998) Robust entropy-based end point detection for speech recognition in noisy environments. in: The International Conference on Spoken Language Processing, Incorporating the Australian International Speech Science and Technology Conference, Sydney Convention Centre, Sydney, Australia, November-December. DBLP 232–235

  55. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay- differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141. doi:10.1002/nme.1061

    Article  MathSciNet  MATH  Google Scholar 

  56. Xun J, Yan SZ (2008) A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure. Mech Syst Signal Proc 22(7):1705–1723. doi:10.1016/j.ymssp.2008.02.008

    Article  MathSciNet  Google Scholar 

  57. Insperger T, Stépán G, Bayly PV, Mann BP (2003) Multiple chatter frequencies in milling processes. J Sound Vib 262(2):333–345. doi:10.1016/S0022-460X(02)01131-8

    Article  Google Scholar 

  58. Feng JL, Sun ZL, Jiang ZH, Yang L (2016) Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography. Int J Adv Manuf Technol 82(9–12):1909–1920. doi:10.1007/s00170-015-7509-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Wang, X., Liu, Z. et al. EEMD-based online milling chatter detection by fractal dimension and power spectral entropy. Int J Adv Manuf Technol 92, 1185–1200 (2017). https://doi.org/10.1007/s00170-017-0183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0183-7

Keywords

Navigation