Skip to main content
Log in

A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In recent years, additive manufacturing (AM) has undergone a rapid growth, therefore several processes based on different working principles (e.g. photopolymerization, sintering, extrusion, material jetting, etc) are now available and allow to manufacture parts using a wide range of materials. Consequently, the so-called benchmark artifacts are necessary to assess the capabilities and limitations of each AM process or to compare the performance of different processes. This paper focuses on the benchmark artifacts for evaluating the geometrical performance of AM processes and proposes an extensive review of the available literature, analyzing the design of such test parts in detail. The investigated test parts are classified according to the process aspect that they are able to evaluate (dimensional/geometrical accuracy, repeatability, minimum feature size) and the combination AM process/materials for which they have been used. In addition, the paper draws a summary of guidelines to design benchmark artifacts for geometrical performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISO/ASTM 52900:2015. Additive manufacturing—General principles—Terminology

  2. Mahesh M (2004) Rapid prototyping and manufacturing benchmarking. PhD Thesis, National University of Singapore

  3. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295. doi:10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  4. Garg A, Bhattacharya A, Batish A (2015) Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading. Proc Inst Mech Eng Part B - J Eng Manuf. doi:10.1177/0954405415617447

  5. Basile B, Pagano C, Fassi I (2016) Micro-FDM process capability and comparison with micro-injection moulding. Proceedings of 32th international Conference of the Polymer Processing Society (PPS-32), Lyon, France.

  6. Kim GD, Oh YT (2008) A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc Inst Mech Eng Part B - J Eng Manuf 222(2):201–215. doi:10.1243/09544054JEM724

    Article  MathSciNet  Google Scholar 

  7. Perez MA, Ramos J, Espalin D, Hossain MS, Wicker RB (2013) Ranking model for 3D printers. Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1048-1065

  8. Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30(10):4243–4252. doi:10.1016/j.matdes.2009.04.030

    Article  Google Scholar 

  9. Senthilkumaran K, Pandey PM, Rao PVM (2012) Statistical modeling and minimization of form error in SLS prototyping. Rapid Prototyping J 18(1):38–48. doi:10.1108/13552541211193485

    Article  Google Scholar 

  10. Gurrala PK, Regalla SP (2014) Multi-objective optimisation of strength and volumetric shrinkage of FDM parts: a multi-objective optimization scheme is used to optimize the strength and volumetric shrinkage of FDM parts considering different process parameters. Virtual and Physical Prototyping 9(2):127–138. doi:10.1080/17452759.2014.898851

    Article  Google Scholar 

  11. Moylan S, Slotwinski J, Cooke A, Jurrens K, Donmez MA (2012) Proposal for a standardized test artifact for additive manufacturing machines and processes Proceedings of the 23rd Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 902-920

  12. Moylan S, Slotwinski J, Cooke A, Jurrens K, Donmez MA (2014) An additive manufacturing test artifact. J Res Natl Inst Stand Technol 119:429–459. doi:10.6028/jres.119.017

    Article  Google Scholar 

  13. Kruth JP (1991) Material increase manufacturing by rapid prototyping techniques. CIRP Ann - Manuf Technol 40(2):603–614

    Article  Google Scholar 

  14. Wohlers T (1992) Chrysler compares rapid prototyping systems. Comput - Aided Eng 11(10):84–91

    Google Scholar 

  15. Van Putte DA (1992) A brief benchmarking study of rapid prototyping processes. Proceedings of the 3rd International Conference on Rapid Prototyping, Dayton (OH), USA

  16. Lart G (1992) Comparison of rapid prototyping systems. Proceedings of the 1st European Conference on Rapid Prototyping, Nottingham, UK, pp 6–7

  17. Childs THC, Juster NP (1994) Linear and geometric accuracies from layer manufacturing. CIRP Ann - Manuf Technol 43(1):163–166

    Article  Google Scholar 

  18. Aubin RF (1994) A world wide assessment of rapid prototyping technologies. United Technologies Research Center Report, East Hartford, CT, Report, pp 94–13

    Google Scholar 

  19. Jayaram D, Bagchi A, Jara-Almonte CC, O'Reilly S (1994) Benchmarking of rapid prototyping systems—beginning to set standards. Proceedings of the 5th Annual international solid freeform fabrication Symposium, Austin (TX), USA, pp 146–153

  20. Iuliano L, Ippolito R, De Filippi A (1994) A new user part for performances evaluation of rapid prototyping systems. Proceedings of 3rd European Conference on Rapid Prototyping and Manufacturing, University of Nottingham, Nottingham, UK, pp 327–339

  21. Ippolito R, Iuliano L, Gatto A (1995) Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish. CIRP Ann - Manuf Technol 44(1):157–160. doi:10.1016/S0007-8506(07)62296-3

    Article  Google Scholar 

  22. Reeves PE, Cobb RC (1995) Surface deviation modeling of LMT processes—a comparative analysis. Proceedings of the 5th European Conference on Rapid Prototyping and Manufacturing, Helsinki, Finland, pp 59–77

  23. Shellabear M (1999) Benchmark study of accuracy and surface quality in RP models. Brite/EuRam Report BE-2051, task 4(2)

  24. Loose K, Nakagawa T (1998) Benchmarking various methods of layer manufacturing systems in rapid prototyping. 15th Rapid Prototyping Symposium, Japan Society of Die and Mould Technology (JSDMT) pp 90–100

  25. Zhou JG, Herscovici D, Chen CC (2000) Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts. Int J Mach Tools Manuf 40(3):363–379. doi:10.1016/S0890-6955(99)00068-1

    Article  Google Scholar 

  26. Xu F, Wong YS, Loh HT (2001) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296. doi:10.1016/S0278-6125(01)89001-4

    Article  Google Scholar 

  27. Perez CL (2002) Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int J Prod Res 40(12):2865–2881. doi:10.1080/00207540210146099

    Article  Google Scholar 

  28. Byun HS, Lee KH (2003) Design of a new test part for benchmarking the accuracy and surface finish of rapid prototyping processes. International Conference on Computational Science and Its Applications—ICCSA 2003, Springer Berlin Heidelberg, pp 731–740. doi: 10.1007/3-540-44842-X_74

  29. Dimitrov D, Van Wijck W, Schreve K, De Beer N, Meljer J (2003) An investigation of the capability profile of the three dimensional printing process with an emphasis on the achievable accuracy. CIRP Ann - Manuf Technol 52(1):189–192. doi:10.1016/S0007-8506(07)60562-9

    Article  Google Scholar 

  30. Dimitrov D, Van Wijck W, Schreve K, De Beer N (2006) Investigating the achievable accuracy of three dimensional printing. Rapid Prototyping J 12(1):42–52. doi:10.1108/13552540610637264

    Article  Google Scholar 

  31. Grimm T (2003) Fused deposition modeling: a technology evaluation. Time-compression technologies 11(2):1–6

    Google Scholar 

  32. Mahesh M, Wong YS, Fuh JYH, Loh HT (2004) Benchmarking for comparative evaluation of RP systems and processes. Rapid Prototyping J 10(2):123–135. doi:10.1108/13552540410526999

    Article  Google Scholar 

  33. Mahesh M, Wong YS, Fuh JYH, Loh HT (2006) A six-sigma approach for benchmarking of RP&M processes. Int J Adv Manuf Technol 31(3–4):374–387. doi:10.1007/s00170-005-0201-z

    Article  Google Scholar 

  34. Kruth JP, Vandenbroucke B, Vaerenbergh VJ, Mercelis P (2005) Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Proceedings of the International Conference on Polymers & Moulds Innovations (PMI), Gent, Belgium

  35. Castillo L (2005) Study about the rapid manufacturing of complex parts of stainless steel and titanium. TNO report with the collaboration of AIMME

  36. Pennington RC, Hoekstra NL, Newcomer JL (2005) Significant factors in the dimensional accuracy of fused deposition modelling. Proc Inst Mech Eng Part E - J Process Mech Eng 219(1):89–92. doi:10.1243/095440805X6964

    Article  Google Scholar 

  37. Sercombe TB, Hopkinson N (2006) Process shrinkage and accuracy during indirect laser sintering of aluminium. Adv Eng Mater 8(4):260–264. doi:10.1002/adem.200500265

    Article  Google Scholar 

  38. Abdel Ghany K, Moustafa SF (2006) Comparison between the products of four RPM systems for metals. Rapid Prototyping J 12(2):86–94. doi:10.1108/13552540610652429

    Article  Google Scholar 

  39. Hanumaiah N, Ravi B (2007) Rapid tooling form accuracy estimation using region elimination adaptive search based sampling technique. Rapid Prototyping J 13(3):182–190. doi:10.1108/13552540710750933

    Article  Google Scholar 

  40. Campanelli SL, Cardano G, Giannoccaro R, Ludovico AD, Bohez EL (2007) Statistical analysis of the stereolithographic process to improve the accuracy. Comput - Aided Des 39(1):80–86. doi:10.1016/j.cad.2006.10.003

    Article  Google Scholar 

  41. Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13(4):196–203. doi:10.1108/13552540710776142

    Article  Google Scholar 

  42. Scaravetti D, Dubois P, Duchamp R (2008) Qualification of rapid prototyping tools: proposition of a procedure and a test part. Int J Adv Manuf Technol 38(7–8):683–690. doi:10.1007/s00170-007-1129-2

    Article  Google Scholar 

  43. Pessard E, Mognol P, Hascoët JY, Gerometta C (2008) Complex cast parts with rapid tooling: rapid manufacturing point of view. Int J Adv Manuf Technol 39(9–10):898–904. doi:10.1007/s00170-007-1281-8

    Article  Google Scholar 

  44. Kotlinski J, Kesy Z, Kesy A, Jackson M, Parkin R (2009) Dimensional deviations of machine parts produced in laser sintering technology. Int J Rapid Manuf 1(1):88–98. doi:10.1504/IJRapidM.2009.028933

    Article  Google Scholar 

  45. Espalin D, Medina F, Arcaute K, Zinniel B, Hoppe T, Wicker R (2009) Effects of vapor smoothing on ABS part dimensions. Proceedings of the Rapid 2009 Conference & exposition, Schaumburg (IL), USA

  46. Choi JW, Medina F, Kim C, Espalin D, Rodriguez D, Stucker B, Wicker R (2011) Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility. J Mater Process Technol 211(3):424–432. doi:10.1016/j.jmatprotec.2010.10.019

    Article  Google Scholar 

  47. Bakar NSA, Alkahari MR, Boejang H (2010) Analysis on fused deposition modelling performance. Zhejiang Univ-Sci A (Appl Phys & Eng) 11(12):972–977. doi:10.1631/jzus.A1001365

    Article  Google Scholar 

  48. Cooke AL, Soons JA (2010) Variability in the geometric accuracy of additively manufactured test parts. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1–12

  49. Campanelli SL, Angelastro A, Ludovico AD, Contuzzi N (2010) Capabilities and performances of the selective laser melting process. In: New trends in technologies: devices, computer, communication and Industrial systems, Italy: INTECH open access Publisher

  50. Delgado J, Ciurana J, Reguant C, Cavallini B (2010) Studying the repeatability in DMLS technology using a complete geometry test part. Proceedings of the 4th International Conference on Advanced Research in Virtual and Physical Prototyping, Leiria, Portugal

  51. Brajlih T, Valentan B, Balic J, Drstvensek I (2011) Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyping J 17(1):64–75. doi:10.1108/13552541111098644

    Article  Google Scholar 

  52. Johnson WM, Rowell M, Deason B, Eubanks M (2011) Benchmarking evaluation of an open source fused deposition modeling additive manufacturing system. Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 197–211

  53. Johnson WM, Rowell M, Deason B, Eubanks M (2014) Comparative evaluation of an open-source FDM system. Rapid Prototyping J 20(3):205–214. doi:10.1108/RPJ-06-2012-0058

    Article  Google Scholar 

  54. Saqib S, Urbanic J (2012) An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts. Enabling Manufacturing Competitiveness and Economic Sustainability, Springer Berlin, pp 293–298

    Google Scholar 

  55. Fahad M, Hopkinson N (2012) A new benchmarking part for evaluating the accuracy and repeatability of additive manufacturing (AM) processes. 2nd International Conference on Mechanical, Production and Automobile Engineering (ICMPAE 2012), Singapore, pp 28–29

  56. Williams CB, Seepersad CC (2012) Design for additive manufacturing curriculum: a problem-and project-based approach. Proceedings of the 23rd Annual international solid freeform fabrication Symposium, Austin (TX), USA, pp 81–92

  57. Roberson DA, Espalin D, Wicker RB (2013) 3D printer selection: a decision-making evaluation and ranking model. Virtual and Physical Prototyping 8(3):201–212. doi:10.1080/17452759.2013.830939

    Article  Google Scholar 

  58. Islam MN, Boswell B, Pramanik A (2013) An investigation of dimensional accuracy of parts produced by three-dimensional printing. Proceedings of the World Congress on Engineering 1:3–5

    Google Scholar 

  59. Cruz Sanchez FA, Boudaoud H, Muller L, Camargo M (2014) Towards a standard experimental protocol for open source additive manufacturing. Virtual and Physical Prototyping 9(3):151–167. doi:10.1080/17452759.2014.919553

    Article  Google Scholar 

  60. Hao B, Korkmaz E, Bediz B, Ozdoganlar OB (2014) A novel test artifact for performance evaluation of additive manufacturing processes. American Society for Precision Engineering Conference.

  61. Yang L, Anam MA (2014) An investigation of standard test part design for additive manufacturing. Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 901-922

  62. Jared BH, Tran HD, Saiz D, Boucher CL, Dinardo JE (2014) Metrology for additive manufacturing parts and processes. Spring Topical Meeting 57

  63. Yasa E, Demir F, Akbulut G, Cızıoğlu N, Pilatin S (2014) Benchmarking of different powder-bed metal fusion processes for machine selection in additive manufacturing. Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 390–403

  64. Meisel NA, Williams CB (2014) Design for Additive Manufacturing: an investigation of key manufacturing considerations in multi-material PolyJet 3D printing. Proceedings of the 25th Annual international solid freeform fabrication Symposium, Austin (TX), USA, pp 747–763

  65. Meisel NA, Williams CB (2015) An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. J Mech Des 137(11):111406. doi:10.1115/1.4030991

    Article  Google Scholar 

  66. Lanzotti A, Del Giudice DM, Lepore A, Staiano G, Martorelli M (2015) On the geometric accuracy of RepRap open-source three-dimensional printer. J Mech Des 137(10):101703. doi:10.1115/1.4031298

    Article  Google Scholar 

  67. Lanzotti A, Martorelli M, Staiano G (2015) Understanding process parameter effects of RepRap open-source three-dimensional printers through a design of experiments approach. J Manuf Sci Eng - Trans ASME 137(1):011017. doi:10.1115/1.4029045

    Article  Google Scholar 

  68. Thompson MK, Mischkot M (2015) Design of test parts to characterize micro additive manufacturing processes. Procedia CIRP 34:223–228. doi:10.1016/j.procir.2015.07.065

    Article  Google Scholar 

  69. Chang S, Li H, Ostrout N, Jhuria M (2015) Geometric element test targets for visual inference of a printer’s dimension limitations Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1491–1503

  70. Decker N, Yee A (2015) A simplified benchmarking model for the assessment of dimensional accuracy in FDM processes. Int J Rapid Manuf 5(2):145–154. doi:10.1504/IJRAPIDM.2015.073573

    Article  Google Scholar 

  71. Teeter MG, Kopacz AJ, Nikolov HN, Holdsworth DW (2015) Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications. Proc Inst Mech Eng Part H - J Eng Med 229(1):20–27. doi:10.1177/0954411914565222

    Article  Google Scholar 

  72. Fernandez-Vicente M, Canyada M, Conejero A (2015) Identifying limitations for design for manufacturing with desktop FFF 3D printers. Int J Rapid Manuf 5(1):116–128. doi:10.1504/IJRAPIDM.2015.073551

    Article  Google Scholar 

  73. Minetola P, Iuliano L, Marchiandi G (2016) Benchmarking of FDM machines through part quality using IT grades. Procedia CIRP 41:1027–1032. doi:10.1016/j.procir.2015.12.075

    Article  Google Scholar 

  74. Islam MN, Sacks S (2016) An experimental investigation into the dimensional error of powder-binder three-dimensional printing. Int J Adv Manuf Technol 82(5–8):1371–1380. doi:10.1007/s00170-015-7482-7

    Article  Google Scholar 

  75. Islam MN, Gomer H, Sacks S (2016) Comparison of dimensional accuracies of stereolithography and powder binder printing. Int J Adv Manuf Technol:1–11. doi:10.1007/s00170-016-8988-3

  76. Yang H, Lim JC, Liu Y, Qi X, Yap YL, Dikshit V, Yeong WY, Wei J (2016) Performance evaluation of ProJet multi-material jetting 3D printer. Virtual and Physical Prototyping:1–9. doi:10.1080/17452759.2016.1242915

  77. Berger A, Sharon Y, Ashkenazi D, Stern A (2016) Fascicle XII: Welding Equipment and Technology 27:29–37

    Google Scholar 

  78. Kniepkamp M, Fischer J, Abele E (2016) Dimensional accuracy of small parts manufactured by micro selective laser melting. Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1530–1537

  79. Calignano F, Lorusso M, Pakkanen J, Trevisan F, Ambrosio EP, Manfredi D, Fino P (2017) Investigation of accuracy and dimensional limits of part produced in aluminum alloy by selective laser melting. Int J Adv Manuf Technol 88(1):451–458. doi:10.1007/s00170-016-8788-9

    Article  Google Scholar 

  80. AIA/NAS, NAS 979 uniform cutting tests—NAS series metal cutting equipment specifications, 1969

  81. ISO 286–1:2010—Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes–part 1: basis of tolerances, deviations and fits

  82. Richter J, Jacobs P (1992) Accuracy. In: Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers, 287–315

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Rebaioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebaioli, L., Fassi, I. A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes. Int J Adv Manuf Technol 93, 2571–2598 (2017). https://doi.org/10.1007/s00170-017-0570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0570-0

Keywords

Navigation