Skip to main content
Log in

Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the growing demand for vehicle weight reduction and the increased application of multimaterial design, it is imperative to address the challenges of welding dissimilar light alloys. This paper presents a review on laser welding of Al/Mg, Al/Ti, and Mg/Ti alloys, with focus on the techniques used to suppress the formation of brittle intermetallic compounds (IMCs) and improve joining mechanism. For Al/Mg joints, studies have shown that the use of structural adhesives, the use of interlayers such as Ce, Ni, Ti, and Fe foils and Zn-Al filler metals, and hybrid adhesive-interlayers could suppress the formation of brittle IMCs and improve joint strength. The formation of brittle IMCs during laser welding of Al/Ti alloys could be minimized by offsetting the laser beam at an appropriate distance towards either the Al or Ti alloy, the use of split-beam laser with appropriate joint design, the use of high welding speed, improving the laser energy distribution, and the use of V-groove with Al-Si filler metals. For Mg/Ti alloys, offsetting the laser beam at an appropriate distance towards the Mg alloy, the use of AZ series Mg alloy-based filler wires, and coating the Ti alloy with Ni were found to facilitate the joint formation and improve the joint strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Humpenöder F, Popp A, Stevanovic M, Müller C, Bodirsky BL, Bonsch M, Dietrich JP, Lotze-Campen H, Weindl I, Biewald A (2015) Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation? Environ Sci Technol 49(11):6731–6739

  2. Manladan S, Yusof F, Ramesh S, Fadzil M (2016) A review on resistance spot welding of magnesium alloys. Int J Adv Manuf Technol 86(5):1805–1825. https://doi.org/10.1007/s00170-015-8258-9

    Article  Google Scholar 

  3. Kim HC, Wallington TJ (2013) Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization. Environ Sci Technol 47(12):6089–6097. https://doi.org/10.1021/es3042115

    Article  Google Scholar 

  4. Modaresi R, Pauliuk S, Løvik AN, Müller DB (2014) Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ Sci Technol 48(18):10776–10784. https://doi.org/10.1021/es502930w

    Article  Google Scholar 

  5. Vaidya WV, Horstmann M, Ventzke V, Petrovski B, Kocak M, Kocik R, Tempus G (2009) Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part I: local gradients in microstructure, hardness and strength. Materwiss Werkst 40(8):623–633. https://doi.org/10.1002/mawe.200900366

    Article  Google Scholar 

  6. Liu L (2010) Introduction to the welding and joining of magnesium. In: Liu L (ed) Welding and joining of magnesium alloys. Woodhead Publishing, Cambridge. https://doi.org/10.1533/9780857090423.1.3

    Chapter  Google Scholar 

  7. Manladan S, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S (2017) A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90(1):605–634. https://doi.org/10.1007/s00170-016-9225-9

    Article  Google Scholar 

  8. Han L, Thornton M, Shergold M (2010) A comparison of the mechanical behaviour of self-piercing riveted and resistance spot welded aluminium sheets for the automotive industry. Mater Des 31(3):1457–1467. https://doi.org/10.1016/j.matdes.2009.08.031

    Article  Google Scholar 

  9. Ambroziak A, Korzeniowski M (2010) Using resistance spot welding for joining aluminium elements in automotive industry. Arch Civil Mech Eng 10(1):5–13

    Article  Google Scholar 

  10. Rodriguez R, Jordon J, Allison P, Rushing T, Garcia L (2015) Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Mater Des 83:60–65. https://doi.org/10.1016/j.matdes.2015.05.074

    Article  Google Scholar 

  11. Han L, Thornton M, Boomer D, Shergold M (2011) A correlation study of mechanical strength of resistance spot welding of AA5754 aluminium alloy. J Mater Process Technol 211(3):513–521. https://doi.org/10.1016/j.jmatprotec.2010.11.004

    Article  Google Scholar 

  12. Han L, Thornton M, Li D, Shergold M (2011) Effect of governing metal thickness and stack orientation on weld quality and mechanical behaviour of resistance spot welding of AA5754 aluminium. Mater Des 32(4):2107–2114. https://doi.org/10.1016/j.matdes.2010.11.047

    Article  Google Scholar 

  13. Liu J, Rao Z, Liao S, Wang P-C (2014) Modeling of transport phenomena and solidification cracking in laser spot bead-on-plate welding of AA6063-T6 alloy. Part I—the mathematical model. Int J Adv Manuf Technol 73(9–12):1705–1716. https://doi.org/10.1007/s00170-014-5924-2

    Article  Google Scholar 

  14. Qiu R, Zhang Z, Zhang K, Shi H, Ding G (2011) Influence of welding parameters on the tensile shear strength of aluminum alloy joint welded by resistance spot welding. J Mater Eng Perform 20(3):355–358. https://doi.org/10.1007/s11665-010-9703-4

    Article  Google Scholar 

  15. Karimi M, Sedighi M, Afshari D (2015) Thermal contact conductance effect in modeling of resistance spot welding process of aluminum alloy 6061-T6. Int J Adv Manuf Technol 77(5–8):885–895. https://doi.org/10.1007/s00170-014-6492-1

    Article  Google Scholar 

  16. Plaine A, Suhuddin U, Alcântara N, dos Santos J (2017) Microstructure and mechanical behavior of friction spot welded AA6181-T4/Ti6Al4V dissimilar joints. Int J Adv Manuf Technol:1–12. https://link.springer.com/10.1007/s00170-017-0439-2

  17. Gao M, Wang Z, Li X, Zeng X (2012) Laser keyhole welding of dissimilar Ti-6Al-4V titanium alloy to AZ31B magnesium alloy. Metall Mater Trans A 43(1):163–172. https://doi.org/10.1007/s11661-011-0825-6

    Article  Google Scholar 

  18. Haddadi F (2016) Microstructure reaction control of dissimilar automotive aluminium to galvanized steel sheets ultrasonic spot welding. Mater Sci Eng A 678:72–84. https://doi.org/10.1016/j.msea.2016.09.093

    Article  Google Scholar 

  19. Tan C, Chen B, Meng S, Zhang K, Song X, Zhou L, Feng J (2016) Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler. Mater Des 99:127–134. https://doi.org/10.1016/j.matdes.2016.03.073

    Article  Google Scholar 

  20. Gao M, Wang Z, Yan J, Zeng X (2011) Dissimilar Ti/Mg alloy butt welding by fibre laser with Mg filler wire–preliminary study. Sci Technol Weld Join 16(6):488–496. https://doi.org/10.1179/1362171811Y.0000000033

    Article  Google Scholar 

  21. Zhang T, Wang W, Zhou J, Cao X, Yan Z, Wei Y, Zhang W (2017) Investigation of interface bonding mechanism of an explosively welded tri-metal titanium/aluminum/magnesium plate by nanoindentation. JOM:1–6. https://link.springer.com/article/10.1007/s11837-017-2517-1

  22. Gao M, Chen C, Gu YZ, Zeng XY (2014) Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys. Materials 7(3):1590–1602. https://doi.org/10.3390/ma7031590

    Article  Google Scholar 

  23. Sahul M, Sahul M, Vyskoc M, Caplovic L, Pasak M (2017) Disk laser weld brazing of AW5083 aluminum alloy with titanium grade 2. J Mater Eng Perform 26(3):1346–1357. https://doi.org/10.1007/s11665-017-2529-6

    Article  Google Scholar 

  24. Anawa E, Olabi A, Elshukri F (2009) Modeling and optimization of tensile shear strength of titanium/aluminum dissimilar welded component. In: J Physics: Conference Series. vol 1. IOP Publishing, p 012033. https://doi.org/10.1088/1742-6596/181/1/012033

  25. Chen SH, Li LQ, Chen YB, Liu DJ (2010) Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire. T Nonferr Metal Soc 20(1):64–70. https://doi.org/10.1016/S1003-6326(09)60098-4

    Article  Google Scholar 

  26. Chen Y, Chen S, Li L (2010) Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding–brazing. Mater Des 31(1):227–233. https://doi.org/10.1016/j.matdes.2009.06.029

    Article  Google Scholar 

  27. Borrisutthekul R, Miyashita Y, Mutoh Y (2005) Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O. Sci Technol Adv Mater 6(2):199–204. https://doi.org/10.1016/j.stam.2004.11.014

    Article  Google Scholar 

  28. Qi XD, Liu LM (2012) Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique. Mater Des 33:436–443. https://doi.org/10.1016/j.matdes.2011.04.046

    Article  Google Scholar 

  29. Shah L, Gerlich A, Zhou Y (2017) Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer. Int J Adv Manuf Technol:1–12. https://link.springer.com/article/10.1007/s00170-017-1038-y

  30. Scherm F, Bezold J, Glatzel U (2012) Laser welding of Mg alloy MgAl3Zn1 (AZ31) to Al alloy AlMg3 (AA5754) using ZnAl filler material. Sci Technol Weld Join 17(5):364–367. https://doi.org/10.1179/136217112X13333824902080

    Article  Google Scholar 

  31. Liu LM, Liu XJ, Liu SH (2006) Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer. Scr Mater 55(4):383–386. https://doi.org/10.1016/j.scriptamat.2006.04.025

    Article  Google Scholar 

  32. Majumdar B, Galun R, Weisheit A, Mordike B (1997) Formation of a crack-free joint between Ti alloyand Al alloy by using a high-power CO2 laser. J Mater Sci 32(23):6191–6200. https://doi.org/10.1023/A:1018620723793

    Article  Google Scholar 

  33. Ozaki H, Hayashi S, Kutsuna M (2009) Laser roll welding of dissimilar metal joint of titanium to aluminium alloy. Weld Int 23(7):501–509. https://doi.org/10.1080/09507110802543005

    Article  Google Scholar 

  34. Chen S, Yang D, Li M, Zhang Y, Huang J, Yang J, Zhao X (2016) Laser penetration welding of an overlap titanium-on-aluminum configuration. Int J Adv Manuf Technol 87(9–12):3069–3079. https://doi.org/10.1007/s00170-016-8732-z

    Article  Google Scholar 

  35. Kreimeyer M, Wagner F, Vollertsen F (2005) Laser processing of aluminum–titanium-tailored blanks. Opt Laser Eng 43(9):1021–1035. https://doi.org/10.1016/j.optlaseng.2004.07.005

    Article  Google Scholar 

  36. Sun Z, Ion J (1995) Laser welding of dissimilar metal combinations. J Mater Sci 30(17):4205–4214. https://doi.org/10.1007/BF00361499

    Article  Google Scholar 

  37. Cao X, Jahazi M, Immarigeon J, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171(2):188–204. https://doi.org/10.1016/j.jmatprotec.2005.06.068

    Article  Google Scholar 

  38. Liu LM, Wang H, Song G, Ye JN (2007) Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminum alloy. J Mater Sci 42(2):565–572. https://doi.org/10.1007/s10853-006-1068-6

    Article  Google Scholar 

  39. Liu LM, Wang HY, Zhang ZD (2007) The analysis of laser weld bonding of Al alloy to Mg alloy. Scr Mater 56(6):473–476. https://doi.org/10.1016/j.scriptamat.2006.11.034

    Article  Google Scholar 

  40. Liu LM, Jiang JB (2011) The effect of adhesive on arc behaviors of laser-TIG hybrid weld bonding process of Mg to Al alloy. Ieee T Plasma Sci 39(1):581–586. https://doi.org/10.1109/TPS.2010.2089993

    Article  MathSciNet  Google Scholar 

  41. Wang HY, Liu LM, Jia ZY (2011) The influence of adhesive on the Al alloy in laser weld bonding Mg-Al process. J Mater Sci 46(16):5534–5540. https://doi.org/10.1007/s10853-011-5498-4

    Article  Google Scholar 

  42. Chang WS, Rajesh SR, Chun CK, Kim HJ (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol 27(3):199–204. https://doi.org/10.1016/S1005-0302(11)60049-2

    Article  Google Scholar 

  43. Gao M, Mei SW, Li XY, Zeng XY (2012) Characterization and formation mechanism of laser-welded Mg and Al alloys using Ti interlayer. Scr Mater 67(2):193–196. https://doi.org/10.1016/j.scriptamat.2012.04.015

    Article  Google Scholar 

  44. Wang H, Liu L, Liu F (2013) The characterization investigation of laser-arc-adhesive hybrid welding of Mg to Al joint using Ni interlayer. Mater Des 50:463–466. https://doi.org/10.1016/j.matdes.2013.02.085

    Article  Google Scholar 

  45. Wang H, Zhang Z, Liu L (2013) The effect of galvanized iron interlayer on the intermetallics in the laser weld bonding of Mg to Al fusion zone. J Mater Eng Perform 22(2):351–357. https://doi.org/10.1007/s11665-012-0260-x

    Article  Google Scholar 

  46. Massalski TB, Okamoto H, Subramanian P, Kacprzak L, Scott WW (1986) Binary alloy phase diagrams, vol 1. vol 2. American Society for Metals, Metals Park, OH

    Google Scholar 

  47. Möller F, Grden M, Thomy C, Vollertsen F (2011) Combined laser beam welding and brazing process for aluminium titanium hybrid structures. Phys Procedia 12:215–223. https://doi.org/10.1016/j.phpro.2011.03.028

    Article  Google Scholar 

  48. Chen SH, Li LQ, Chen YB, Huang JH (2011) Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process. J Alloy Compd 509(3):891–898. https://doi.org/10.1016/j.jallcom.2010.09.125

    Article  Google Scholar 

  49. Cabibbo M, Marrone S, Quadrini E (2005) Mechanical and microstructural characteristics of laser welded titanium–aluminium joints. Weld Int 19(2):125–129. https://doi.org/10.1533/wint.2005.3379

    Article  Google Scholar 

  50. Liedl G, Kratky A, Mayr M, Saliger A (2011) Laser assisted joining of dissimilar materials. In; Proceedings of the IQCMEA-ICF “Performance and Failure Analysis of Engineering Materials”, Luxor, Egypt:14–17

  51. Behúlová M, Babalová E, Nagy M (2017) Simulation model of Al-Ti dissimilar laser welding-brazing and its experimental verification. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012007. https://doi.org/10.1088/1757-899X/179/1/012007

  52. Wagner F, Kreimeyer M, Kocik R, Vollertsen F (2006) Laser joining of aluminium to titanium with focus on aeronautical applications. PICALO 2006:42–47

    Google Scholar 

  53. Tomashchuk I, Sallamand P, Cicala E, Peyre P, Grevey D (2015) Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V. J Mater Process Technol 217:96–104. https://doi.org/10.1016/j.jmatprotec.2014.10.025

    Article  Google Scholar 

  54. Song Z, Nakata K, Wu A, Liao J (2013) Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove. Mater Sci Eng A 560:111–120. https://doi.org/10.1016/j.msea.2012.09.044

    Article  Google Scholar 

  55. Casalino G, Mortello M, Peyre P (2015) Yb–YAG laser offset welding of AA5754 and T40 butt joint. J Mater Process Technol 223:139–149. https://doi.org/10.1016/j.jmatprotec.2015.04.003

    Article  Google Scholar 

  56. Chen S, Li L, Chen Y, Dai J, Huang J (2011) Improving interfacial reaction nonhomogeneity during laser welding–brazing aluminum to titanium. Mater Des 32(8):4408–4416. https://doi.org/10.1016/j.matdes.2011.03.074

    Article  Google Scholar 

  57. Vaidya W, Horstmann M, Ventzke V, Petrovski B, Koçak M, Kocik R, Tempus G (2010) Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. J Mater Sci 45(22):6242–6254. https://doi.org/10.1007/s10853-010-4719-6

    Article  Google Scholar 

  58. Barr A, Hunkel M, von Hehl A (2012) Determination of local material properties of laser beam welded aluminium-steel and aluminium-titanium compounds. Materialwiss Werkst 43(4):321–327. https://doi.org/10.1002/mawe.201200948

    Article  Google Scholar 

  59. Vaidya WV, Horstmann M, Ventzke V, Petrovski B, Kocak M, Kocik R, Tempus G (2009) Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part II: resistance to fatigue crack propagation and fracture. Materialwiss Werkst 40(10):769–779. https://doi.org/10.1002/mawe.200900367

    Article  Google Scholar 

  60. Bagger C, Olsen FO (2005) Review of laser hybrid welding. J Laser Appl 17(1):2–14. https://doi.org/10.2351/1.1848532

    Article  Google Scholar 

  61. Tomashchuk I, Sallamand P, Méasson A, Cicala E, Duband M, Peyre P (2017) Aluminum to titanium laser welding-brazing in V-shaped groove. J Mater Process Technol 245:24–36. https://doi.org/10.1016/j.jmatprotec.2017.02.009

    Article  Google Scholar 

  62. Lee S-J, Takahashi M, Kawahito Y, Katayama S (2015) Microstructural evolution and characteristics of weld fusion zone in high speed dissimilar welding of Ti and Al. Int J Precis Eng Manuf 16(10):2121–2127. https://doi.org/10.1007/s12541-015-0274-z

    Article  Google Scholar 

  63. Lee S-J, Nakamura H, Kawahito Y, Katayama S (2013) Weldability of Ti and Al dissimilar metals using single-mode fiber laser. J Laser Micro Nanoen 8(2):149–154. https://doi.org/10.2961/jlmn.2013.02.0006

    Article  Google Scholar 

  64. Tan C, Song X, Chen B, Li L, Feng J (2016) Enhanced interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti joints with Al element from filler. Mater Lett 167:38–42. https://doi.org/10.1016/j.matlet.2015.12.119

    Article  Google Scholar 

  65. Tan C, Lu Q, Chen B, Song X, Li L, Feng J, Wang Y (2017) Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys. Opt Laser Technol 89:156–167. https://doi.org/10.1016/j.optlastec.2016.10.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Malaya, Malaysia for providing the necessary resources for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ramesh or S. M. Manladan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baqer, Y.M., Ramesh, S., Yusof, F. et al. Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys. Int J Adv Manuf Technol 95, 4353–4369 (2018). https://doi.org/10.1007/s00170-017-1565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1565-6

Keywords

Navigation