Skip to main content
Log in

Cooling rate predictions and its correlation with grain characteristics during electron beam welding of stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Cooling rate of the weld during solidification has significant influence on metallurgical and mechanical properties of welded joint. In the present study, cooling rates have been predicted during electron beam welding of AISI 304 stainless steel for different values of energy input per unit length using physics-based phenomenological model and commercial finite element analysis. Cooling rates predicted by the above models have been validated with the experimental cooling rate estimated indirectly from the secondary dendritic arm spacing (SDAS) obtained in the microstructure of the welded sample. The predicted cooling rate is observed to vary inversely with the energy input per unit length, as expected. It has also been correlated with the grain characteristics like grain size and grain boundary character distribution (GBCD) obtained by EBSD analysis of the weld metal. An increase in low-angle boundary has been observed with the increase in cooling rate, which has been attributed to an increase in dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poorhaydari K, Patchett BM, Ivey DG (2005) Estimation of cooling rate in the welding of plates with intermediate thickness. Weld J 84:149–155

    Google Scholar 

  2. He X, Elmer JW, Debroy T (2005) Heat transfer and fluid flow in laser microwelding. J Appl Phys 97:84909. https://doi.org/10.1063/1.1873032

    Article  Google Scholar 

  3. Bai Q, Ma Y, Xing S, Chen Z, Kang X (2017) Prediction of the temperature distribution and microstructure in the HAZ of SA508Gr4 reactor pressure vessel steel. ISIJ Int 57:875–882

    Article  Google Scholar 

  4. Kumar R, Arya HK, Saxena R (2014) Experimental determination of cooling rate and its effect on microhardness in submerged arc welding of mild steel plate (grade c-25 as per IS 1570). J Mater Sci Eng 3:3–6. https://doi.org/10.4172/2169-0022.1000138

    Google Scholar 

  5. Desai RS, Bag S (2014) Influence of displacement constraints in thermomechanical analysis of laser micro-spot welding process. J Manuf Process 16:264–275. https://doi.org/10.1016/j.jmapro.2013.10.002

    Article  Google Scholar 

  6. Nagesh DS, Datta GL (2002) Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J Mater Process Technol 123:303–312. https://doi.org/10.1016/S0924-0136(02)00101-2

    Article  Google Scholar 

  7. Dey V, Pratihar DK, Datta GL, Jha MN, Saha TK, Bapat AV (2010) Optimization and prediction of weldment profile in bead-on-plate welding of Al-1100 plates using electron beam. Int J Adv Manuf Technol 48:513–528. https://doi.org/10.1007/s00170-009-2307-1

    Article  Google Scholar 

  8. Jha MN, Pratihar DK, Dey V, Saha TK, Bapat AV (2011) Study on electron beam butt welding of austenitic stainless steel 304 plates and its input-output modelling using neural networks. Proc Inst Mech Eng B J Eng Manuf 225:2051–2070. https://doi.org/10.1177/0954405411404856

    Article  Google Scholar 

  9. Ibrahim IA, Mohamat SA, Amir A, Ghalib A (2012) The effect of gas metal arc welding (GMAW) processes on different welding parameters. Procedia Eng 41:1502–1506. https://doi.org/10.1016/j.proeng.2012.07.342

    Article  Google Scholar 

  10. Kar J, Mahanty S, Roy SK, Roy GG (2015) Estimation of average spot diameter and bead penetration using process model during electron beam welding of AISI 304 stainless steel. Trans Indian Inst Metals 68:935–941. https://doi.org/10.1007/s12666-015-0529-5

    Article  Google Scholar 

  11. Ghazvinloo HR, Honarbakhsh-Raouf A, Shadfar N (2010) Effect of arc voltage, welding current and welding speed on fatigue life, impact energy and bead penetration of AA6061 joints produced by robotic MIG welding. Indian J Sci Technol 3:156–162. https://doi.org/10.17485/ijst/2010/v3i2/29669

    Google Scholar 

  12. Mondal A, Kumar Saha M, Hazra R, Das S (2016) Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens. Cogent Eng 3:1143598. https://doi.org/10.1080/23311916.2016.1143598

    Article  Google Scholar 

  13. Attarha MJ, Sattari-Far I (2011) Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation. J Mater Process Technol 211:688–694. https://doi.org/10.1016/j.jmatprotec.2010.12.003

    Article  Google Scholar 

  14. Moeinifar S, Kokabi AH, Hosseini HRM (2011) Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel. J Mater Process Technol 211:368–375. https://doi.org/10.1016/j.jmatprotec.2010.10.011

    Article  Google Scholar 

  15. Sirin K, Sirin SY, Kaluc E (2016) Influence of the interpass temperature on t8/5 and the mechanical properties of submerged arc welded pipe. J Mater Process Technol 238:152–159. https://doi.org/10.1016/j.jmatprotec.2016.07.008

    Article  Google Scholar 

  16. Sathiya P, Aravindan S, Ajith PM, Arivazhagan B, Haq AN (2010) Microstructural characteristics on bead on plate welding of AISI 904 L super austenitic stainless steel using gas metal arc welding process. Int J Eng Sci Technol 2:189–199. https://doi.org/10.4314/ijest.v2i6.63710

    Google Scholar 

  17. Chuaiphan W, Srijaroenpramong L (2014) Effect of welding speed on microstructures, mechanical properties and corrosion behavior of GTA-welded AISI 201 stainless steel sheets. J Mater Process Technol 214:402–408. https://doi.org/10.1016/j.jmatprotec.2013.09.025

    Article  Google Scholar 

  18. Kumar S, Shahi AS (2011) Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater Des 32:3617–3623. https://doi.org/10.1016/j.matdes.2011.02.017

    Article  Google Scholar 

  19. Goodwin GM (1988) The effects of heat input and weld process on hot cracking in stainless steel. Weld J 67:88–94

    Google Scholar 

  20. Gietzelt T, Wunsch T, Eichhorn L, Dittmeyer R (2015) Impact of different parameters for pulsed-laser welding of the austenitic stainless steel 304. Chem Eng Technol 38:2189–2197. https://doi.org/10.1002/ceat.201500212

    Article  Google Scholar 

  21. Kanigalpula PKC, Pratihar DK, Jha MN, Derose J, Bapat AV, Pal AR (2016) Experimental investigations, input-output modeling and optimization for electron beam welding of Cu-Cr-Zr alloy plates. Int J Adv Manuf Technol 85:711–726. https://doi.org/10.1007/s00170-015-7964-7

    Article  Google Scholar 

  22. Manonmani K, Murugan N, Buvanasekaran G (2007) Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int J Adv Manuf Technol 32:1125–1133. https://doi.org/10.1007/s00170-006-0432-7

    Article  Google Scholar 

  23. Rai R, Palmer TA, Elmer JW, Debroy T (2009) Heat transfer and fluid flow during electron beam welding of 304L stainless steel alloy. Weld J 88:54–61

    Google Scholar 

  24. David SA, DebRoy T, Vitek JM (1994) Phenomenological modeling of fusion welding processes. MRS Bull 19:29–35. https://doi.org/10.1017/S0883769400038835

    Article  Google Scholar 

  25. Rai R, Roy GG, Debroy T (2007) A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding. J Appl Phys 101:54909. https://doi.org/10.1063/1.2537587

    Article  Google Scholar 

  26. Roy GG, Elmer JW, DebRoy T (2006) Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. J Appl Phys 100:34903. https://doi.org/10.1063/1.2214392

    Article  Google Scholar 

  27. He X, Fuerschbach PW, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys D Appl Phys 36:1388–1398. https://doi.org/10.1088/0022-3727/36/12/306

    Article  Google Scholar 

  28. Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40:5753–5766. https://doi.org/10.1088/0022-3727/40/18/037

    Article  Google Scholar 

  29. Ranjbarnodeh E, Serajzadeh S, Kokabi AH, Fischer A (2011) Effect of welding parameters on residual stresses in dissimilar joint of stainless steel to carbon steel. J Mater Sci 46:3225–3232. https://doi.org/10.1007/s10853-010-5207-8

    Article  Google Scholar 

  30. Vemanaboina H, Akella S, Buddu RK (2014) Welding process simulation model for temperature and residual stress analysis. Procedia Mater Sci 6:1539–1546. https://doi.org/10.1016/j.mspro.2014.07.135

    Article  Google Scholar 

  31. Mohanty S, Laldas CK, Roy GG (2012) A new model for keyhole mode laser welding using FLUENT. Trans Indian Inst Metals 65:459–466. https://doi.org/10.1007/s12666-012-0151-8

    Article  Google Scholar 

  32. Shanmugam NS, Buvanashekaran G, Sankaranarayanasamy K (2009) Finite element simulation of Nd : YAG laser lap welding of AISI 304 stainless steel sheets. Recent Adv Mech Eng Autom Control:174–179

  33. Kazemi K, Goldak JA (2009) Numerical simulation of laser full penetration welding. Comput Mater Sci 44:841–849. https://doi.org/10.1016/j.commatsci.2008.01.002

    Article  Google Scholar 

  34. Podder D, Kenno S, Das S, Mandal NR (2015) Numerical investigation on interruption in the welding process used in shipbuilding. J Ship Prod Des 31:220–229. https://doi.org/10.5957/JSPD.31.1.140005

    Article  Google Scholar 

  35. Chang WS, Na SJ (2001) Prediction of laser-spot-weld shape by numerical analysis and neural network. Metall Mater Trans B Process Metall Mater Process Sci 32:723–731. https://doi.org/10.1007/s11663-001-0126-3

    Article  Google Scholar 

  36. Gery D, Long H, Maropoulos P (2005) Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol 167:393–401. https://doi.org/10.1016/j.jmatprotec.2005.06.018

    Article  Google Scholar 

  37. Luo Y, You G, Ye H, Liu J (2010) Simulation on welding thermal effect of AZ61 magnesium alloy based on three-dimensional modeling of vacuum electron beam welding heat source. Vacuum 84:890–895. https://doi.org/10.1016/j.vacuum.2009.12.005

    Article  Google Scholar 

  38. Ferro P, Zambon A, Bonollo F (2005) Investigation of electron-beam welding in wrought Inconel 706—experimental and numerical analysis. Mater Sci Eng A 392:94–105. https://doi.org/10.1016/j.msea.2004.10.039

    Article  Google Scholar 

  39. Das D, Pratihar DK, Roy GG (2016) Electron beam melting of steel plates: temperature measurement using thermocouples and prediction through finite element analysis. In: CAD/CAM, robot. Factories Futur. Springer, New Delhi, pp 579–588

  40. Bang I-W, Son Y-P, Oh KH et al (2002) Numerical simulation of sleeve repair welding of in-service gas pipelines. Weld J N Y 81:273–282

    Google Scholar 

  41. De A, Walsh CA, Maiti SK, Bhadeshia HKDH (2003) Prediction of cooling rate and microstructure in laser spot welds. Sci Technol Weld Join 8:391–399. https://doi.org/10.1179/136217103225005633

    Article  Google Scholar 

  42. Deng D, Murakawa H (2006) Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci 37:269–277. https://doi.org/10.1016/j.commatsci.2005.07.007

    Article  Google Scholar 

  43. Piekarska W, Kubiak M, Saternus Z (2011) Numerical modelling of thermal phenomena in laser beam and hybrid welding processes using Abaqus FEA. Arch Foundry Eng 11:185–190

    Google Scholar 

  44. Zubairuddin M, Albert SK, Vasudevan M, Mahadevan S, Chaudhari V, Suri VK (2017) Numerical simulation of multi-pass GTA welding of grade 91 steel. J Manuf Process 27:87–97. https://doi.org/10.1016/j.jmapro.2017.04.031

    Article  Google Scholar 

  45. Flemings MC (1974) Solidification processing. McGraw-Hill, Inc., New York

    Google Scholar 

  46. Kurz W, Fisher DJ (1986) Fundamentals of solidification. Trans Tech Publications LTD, Zurich

    Google Scholar 

  47. Won Y-M, Thomas BG (2001) Simple model of microsegregation during solidification of steels. Metall Mater Trans A 32:1755–1767. https://doi.org/10.1007/s11661-001-0152-4

    Article  Google Scholar 

  48. El-Bealy M, Thomas BG (1996) Prediction of dendrite arm spacing for low alloy steel casting processes. Metall Mater Trans B Process Metall Mater Process Sci 27:689–693. https://doi.org/10.1007/BF02915668

    Article  Google Scholar 

  49. Abhilash E, Joseph MA, Krishna P (2006) Prediction of dendritic parameters and macro hardness variation in permanent mould casting of Al-12% Si alloys using artificial neural networks. Fluid Dyn Mater Process 2:211–220

    Google Scholar 

  50. Fu JW, Yang YS, Guo JJ, Tong WH (2008) Effect of cooling rate on solidification microstructures in AISI 304 stainless steel. Mater Sci Technol 24:941–944. https://doi.org/10.1179/174328408X295962

    Article  Google Scholar 

  51. Spinelli JE, Tosetti JP, Santos CA, Spim JA, Garcia A (2004) Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel. J Mater Process Technol 150:255–262. https://doi.org/10.1016/j.jmatprotec.2004.02.040

    Article  Google Scholar 

  52. Löser W, Thiem S, Jurisch M (1993) Solidification modelling of microstructures in near-net-shape casting of steels. Mater Sci Eng A 173:323–326. https://doi.org/10.1016/0921-5093(93)90237-9

    Article  Google Scholar 

  53. Hochanadel PW, Cola MJ, Kelly AM, Papin PA (2001) Pulsed Laser beam welding of 304 to 304L stainless steel: effects of welding parameters on cracking and phase transformations. (No. LA-UR-01-6144). Los Alamos National Lab., NM (US). http://lib-www.lanl.gov/la-pubs/00796499.pdf, accessed on 4th August 2017

  54. Pavlyk V, Dilthey U (2003) Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling. Model Simul Mater Sci Eng 12:S33–S45. https://doi.org/10.1088/0965-0393/12/1/S03

    Article  Google Scholar 

  55. Zhang Y, Ma TJ, Xie HX et al (2012) Estimating the cooling rates of a spot welding nugget in stainless steel. Weld J 91:247–251

    Google Scholar 

  56. Choi J, Mazumder J (2002) Numerical and experimental analysis for solidification and residual stress in the GMAW process for AISI 304 stainless steel. J Mater Sci 37:2143–2158

    Article  Google Scholar 

  57. Kou S (2003) Welding metallurgy. John Wiley & Sons, Inc., Hoboken, New Jersey, https://doi.org/10.1002/0471434027

  58. Elmer JW, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Mater Trans A 20:2117–2131. https://doi.org/10.1007/BF02650298

    Article  Google Scholar 

  59. Kim HS, Kobayashi Y, Tsukamoto S, Nagai K (2005) Effect of cooling rate on microstructure evolution of rapidly cooled high-impurity steels. Mater Sci Eng A 403:311–317. https://doi.org/10.1016/j.msea.2005.05.049

    Article  Google Scholar 

  60. Yin H, Felicelli SD (2010) Dendrite growth simulation during solidification in the LENS process. Acta Mater 58:1455–1465. https://doi.org/10.1016/j.actamat.2009.10.053

    Article  Google Scholar 

  61. Ha XH, Jang SW, Bang WH, Yoon US, Oh KH (2002) Texture evolution in weld regions of SUS-304 stainless steel and TRIP steel. Mater Sci Forum (Switzerland) 408:1377–1382. https://doi.org/10.4028/www.scientific.net/MSF.408-412.1377

    Article  Google Scholar 

  62. Huang YM, Wu YM, Pan CX (2010) EBSD study of solidification characteristics of austenitic stainless steel weld pool. Mater Sci Technol 26:750–753. https://doi.org/10.1179/174328409X405607

    Article  Google Scholar 

  63. Sato YS, Harayama N, Kokawa H, Inoue H, Tadokoro Y, Tsuge S (2009) Evaluation of microstructure and properties in friction stir welded superaustenitic stainless steel. Sci Technol Weld Join 14:202–209. https://doi.org/10.1179/136217108X386518

    Article  Google Scholar 

  64. Badheka VJ, Basu R, Omale J, Szpunar J (2016) Microstructural aspects of TIG and A-TIG welding process of dissimilar steel grades and correlation to mechanical behavior. Trans Indian Inst Metals 69:1765–1773. https://doi.org/10.1007/s12666-016-0836-5

    Article  Google Scholar 

  65. Sule J, Ganguly S, Coules H, Pirling T (2015) Application of local mechanical tensioning and laser processing to refine microstructure and modify residual stress state of a multi-pass 304L austenitic steels welds. J Manuf Process 18:141–150

    Article  Google Scholar 

  66. Meshram SD, Paradkar AG, Reddy GM, Pandey S (2017) Friction stir welding : an alternative to fusion welding for better stress corrosion cracking resistance of maraging steel. J Manuf Process 25:94–103. https://doi.org/10.1016/j.jmapro.2016.11.005

    Article  Google Scholar 

  67. Badgujar BP, Kumar S, Jha MN, Samajdar I, Mascarenhas M, Tewari R, Dey GK (2017) An investigation of electron beam welding of Nb-1Zr-0 . 1C alloy : process parameters and microstructural analysis. J Manuf Process 28:326–335. https://doi.org/10.1016/j.jmapro.2017.07.001

    Article  Google Scholar 

  68. Kumar MV, AG R, Balasubramanian V (2016) EBSD analysis and hot tensile properties of pulsed current gas tungsten arc welded super 304h austenitic stainless steel joints. J Steel Struct Constr 2:2–7. https://doi.org/10.4172/2472-0437.1000110

    Article  Google Scholar 

  69. Roy GG, Zhang Z, Mishra S, et al (2002) A computer program to calculate fluid flow and heat transfer during fusion welding with free Surface. Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania – 16802

  70. Bag S, De A, DebRoy T (2009) A genetic algorithm-assisted inverse convective heat transfer model for tailoring weld geometry. Mater Manuf Process 24:384–397. https://doi.org/10.1080/10426910802679915

    Article  Google Scholar 

  71. Rosenthal D (1941) Mathematical theory of heat distribution during welding and cutting. Weld J 20:220–233

    Google Scholar 

  72. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans Am Soc Mech Eng 68:849–866

    Google Scholar 

  73. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B Process Metall Mater Process Sci 15:299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  74. Prof. Gandham Phanikumar (2016) Analysis and modeling of welding (video), Heat sources part 2/2. In: NPTEL Video Lect. http://nptel.ac.in/courses/113106067/4

  75. Vandersluis E, Ravindran C (2017) Comparison of measurement methods for secondary dendrite arm spacing. Metallogr Microstruct Anal 6:89–94. https://doi.org/10.1007/s13632-016-0331-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Electron Beam Welding lab, IIT Kharagpur, India, for allowing them to carrying out the experiments. Special thanks are due to the EPB lab., Laser lab., Metrology lab., and Hydraulics lab. of the Department of Mechanical Engineering, and CWISS, IIT Kharagpur, India, for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Pratihar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Pratihar, D.K. & Roy, G.G. Cooling rate predictions and its correlation with grain characteristics during electron beam welding of stainless steel. Int J Adv Manuf Technol 97, 2241–2254 (2018). https://doi.org/10.1007/s00170-018-2095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2095-6

Keywords

Navigation