Skip to main content
Log in

Metal cutting simulations using smoothed particle hydrodynamics on the GPU

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, orthogonal metal cutting simulations of Ti6Al4V are presented for two purposes: the accurate prediction of chip shapes and the automatic optimization of cutting parameters. To achieve these results, a new software tool is presented. This software tool employs meshless methods instead of the established FEM and is parallelized using GPGPU computing. These characteristics allow for a dramatic reduction in the computation time compared to established tools, enabling low-resolution simulations in the orders of minutes, and extremely high-resolution simulations in over night time frames, making the aforementioned goals possible. On the other hand, overnight simulations with very high particle numbers are conducted to study the chip shape. In the interest of reproducibility, the software tool developed is made open source and can be obtained from https://github.com/mroethli/mfree_iwf-ul_cut_gpu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambati R et al (2012) Application of material point methods for cutting process simulations. Comput Mater Sci 57:102–110

    Article  Google Scholar 

  2. Bil H, Kılıç SE, Tekkaya AE (2004) A comparison of orthogonal cutting data from experiments with three different finite element models. Int J Mach Tools Manuf 44(9):933–944

    Article  Google Scholar 

  3. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3):275–288

    Article  Google Scholar 

  4. Ceretti E, Lucchi M, Altan T (1999) FEM simulation of orthogonal cutting: serrated chip formation. J Mater Process Technol 95(1-3):17–26

    Article  Google Scholar 

  5. Chen J K, Beraun J E, Jih C J (1999) An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics 23(4):279–287

    Article  MATH  Google Scholar 

  6. Choquin J P, Huberson S (1989) Particles simulation of viscous flow. Comput Fluids 17(2):397–410

    Article  Google Scholar 

  7. Cottet G H, Mas-Gallic S (1990) A particle method to solve the Navier-Stokes system. Numer Math 57 (1):805–827

    Article  MathSciNet  MATH  Google Scholar 

  8. Denkena B, Tönshoff HK (2011) Spanen: Grundlagen. Springer-Verlag, Berlin

    Book  Google Scholar 

  9. Doege E, Meyer-Nolkemper H, Saeed I (1986) Fließkurvenatlas metallischer Werkstoffe: mit Fließkurven für 73 Werkstoffe und einer grundlegenden Einführung. Hanser

  10. Domínguez JM, Crespo AJC, Gómez-Gesteira M (2013) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184(3):617–627

    Article  Google Scholar 

  11. Ducobu F, Riviere-Lorphevre E, Filippi E (2016) Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting. Eur J Mech A Solids 59:58–66

    Article  MATH  Google Scholar 

  12. Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) Experimental and numerical investigation of the uncut chip thickness reduction in Ti6Al4V orthogonal cutting. Meccanica 52(7):1577–1592

    Article  MATH  Google Scholar 

  13. Eldredge JD, Leonard A, Colonius T (2002) A general deterministic treatment of derivatives in particle methods. J Comput Phys 180(2):686–709

    Article  MATH  Google Scholar 

  14. Fatehi R, Fayazbakhsh M, Manzari M (2008) On discretization of second-order derivatives in smoothed particle hydrodynamics. Proceedings of World Academy of Science, Engineering and Technology 30:243–246. Citeseer

    Google Scholar 

  15. Geng X et al (2017) Simulation of the orthogonal cutting of OFHC copper based on the smoothed particle hydrodynamics method. Int J Adv Manuf Technol 91(1-4):265–272

    Article  Google Scholar 

  16. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  17. Gray J P, Monaghan J J, Swift R P (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662

    Article  MATH  Google Scholar 

  18. Guilkey J et al (2009) Uintah user guide. Tech. rep. SCI Institute Technical Report

  19. Hallquist JO et al (2006) LS-DYNA theory manual. Livermore software Technology corporation 3:25–31

    Google Scholar 

  20. Hockney Roger W, Eastwood JW (1988) Computer simulation using particles. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  21. Issa M et al (2011) Prediction of serrated chip formation in orthogonal metal cutting by advanced adaptive 2D numerical methodology. Int J Mach Mach Mater 9(3-4):295–315

    Google Scholar 

  22. Jawahir IS et al (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60(2):603–626

    Article  Google Scholar 

  23. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, vol 21. 1. The Netherlands, pp 541–547

  24. Kuttolamadom M et al (2017) High performance computing simulations to identify process parameter designs for profitable titanium machining. J Manuf Syst 43:235–247

    Article  Google Scholar 

  25. Li S, Liu WK (2007) Meshfree particle methods. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  26. Liu WK, Jun S, Yi FZ (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20 (8-9):1081– 1106

    Article  MathSciNet  MATH  Google Scholar 

  27. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  28. Mamalis A G et al (2001) Finite element simulation of chip formation in orthogonal metal cutting. J Mater Process Technol 110(1):19–27

    Article  Google Scholar 

  29. Monaghan J J, Gingold R A (1983) Shock simulation by the particle method SPH. J Comput Phys 52 (2):374–389

    Article  MATH  Google Scholar 

  30. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    Article  MathSciNet  MATH  Google Scholar 

  31. Movahhedy M R, Gadala M S, Altintas Y (2000) Simulation of chip formation in orthogonal metal cutting process: an ALE finite element approach. Mach Sci Technol 4(1):15– 42

    Article  Google Scholar 

  32. Nairn JA (2015) Numerical simulation of orthogonal cutting using the material point method. Eng Fract Mech 149:262– 275

    Article  Google Scholar 

  33. Nianfei G, Guangyao L, Shuyao L (2009) 3D adaptive RKPM method for contact problems with elastic-plastic dynamic large deformation. Engineering analysis with boundary elements 33(10):1211–1222

    Article  MathSciNet  MATH  Google Scholar 

  34. Niu W et al (2018) Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. Int J Adv Manuf Technol 95(1-4):905–919

    Article  Google Scholar 

  35. Nvidia CUDA (2007) Compute unified device architecture programming guide

  36. Olleak AA, El-Hofy HA (2015) Prediction of cutting forces in high speed machining of Ti6Al4V using SPH method. ASME 2015 international manufacturing science and engineering conference. American Society of Mechanical Engineers. V001T02A018-V001T02A018

  37. Özel T et al (2010) Investigations on the effects of multi-layered coated inserts in machining Ti-6Al-4V alloy with experiments and finite element simulations. CIRP Ann Manuf Technol 59(1):77–82

    Article  Google Scholar 

  38. Patterson H D (1954) The errors of lattice sampling. Journal of the Royal Statistical Society. Series B (Methodological), pp 140–149

  39. Price DJ (2007) SPLASH: An interactive visualisation tool for Smoothed Particle Hydrodynamics simulations. Publ Astron Soc Aust 24(3):159–173

    Article  Google Scholar 

  40. Price DJ (2012) Smoothed particle hydrodynamics and magnetohydrodynamics. J Comput Phys 231(3):759–794

    Article  MathSciNet  MATH  Google Scholar 

  41. Rüttimann N et al (2013) Simulation of hexa-octahedral diamond grain cutting tests using the SPH method. Procedia CIRP 8:322–327

    Article  Google Scholar 

  42. Rüttimann N (2012) Simulation of metal cutting processes using meshfree methods. PhD thesis. Diss, Eidgenössische Technische Hochschule ETH Zürich, Nr, 20646

  43. Shi G, Deng X, Shet C (2002) A finite element study of the effect of friction in orthogonal metal cutting. Finite Elements Elements in Analysis and Design 38(9):863–883

    Article  MATH  Google Scholar 

  44. Shih AJ (1995) Finite element analysis of the rake angle effects in orthogonal metal cutting. Int J Mech Sci 38(1):1–17

    Article  MATH  Google Scholar 

  45. Srivastava AK, Iverson J (2010) An experimental investigation into the high speed turning of Ti-6Al-4V titanium alloy, Int Manuf Sci Eng Conf, pp 401–408

  46. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134

    Article  MathSciNet  MATH  Google Scholar 

  47. Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27(5):650–663

    Article  Google Scholar 

  48. Usui E, Shirakashi T, Kitagawa T (1978) Analytical prediction of three dimensional cutting process Part 3: cutting temperature and crater wear of carbide tool. J Eng Ind 100(2):236–243

    Article  Google Scholar 

  49. Wyen C-F (2011) Rounded cutting edges and their influence in machining titanium. PhD thesis, ETH-Zürich

    Google Scholar 

Download references

Funding

This study is financially supported by the Swiss National Science Foundation under Grant No. 200021-149436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Röthlin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röthlin, M., Klippel, H., Afrasiabi, M. et al. Metal cutting simulations using smoothed particle hydrodynamics on the GPU. Int J Adv Manuf Technol 102, 3445–3457 (2019). https://doi.org/10.1007/s00170-019-03410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03410-0

Keywords

Navigation