Skip to main content
Log in

Performance evaluation of vegetable-based cutting fluids in turning of AISI 1050 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In most machining operations, cutting fluids are essential to ensure the economical profitability of the process. Turning of common plain carbon and low alloy steels is an example of manufacturing process widely used in several branches of the manufacturing industry, were the use of cutting fluids plays a key role in minimizing tool wear, machining forces and surface roughness, and improving overall process performance. Unfortunately, the cutting fluids, particularly those mineral-based, are considered harmful to the environment and therefore a source of pollution in production lines, as well as being a threat to the health of the operators. An attempt of minimizing environmental pollution is to use cutting fluids which are vegetable-based instead of mineral-based, with many producers offering this option in their portfolios. Doubts though arise on how vegetable-based cutting fluids perform compared with the mineral-based fluids. The present work compares the performance of three concentrations (3%, 7%, and 10%) of two vegetable-based cutting fluids (an emulsion and a synthetic) with one mineral-based fluid (semi-synthetic). The comparisons are made through reciprocating sliding tests, wettability, cooling capacity, viscosity, and cutting force measurement in turning of an AISI 1050 steel. All non-machining tests (friction coefficients, droplet contact angles (wettability), heat exchange coefficient by convection and viscosity) and machining tests (machining forces) were performed with all cutting fluids. This set of rheological and tribological tests performed allowed better understanding of the differences in machinability, regarding the cutting forces, of the cutting fluids evaluated. The results showed that, despite the better thermal and tribological properties of the mineral-based cutting fluids, the vegetable-based emulsion had an overall better performance in relation to the wettability angle and machining forces. These results, together with the greater sustainable appeal of vegetable-based cutting fluids, point to their clear feasibility in the machining of AISI 1050 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonilla SH, Almeida CMVB, Giannetti BF, Huisingh D (2010) The roles of cleaner production in the sustainable development of modern societies: an introduction to this special issue. J Clean Prod 18:1–5

    Article  Google Scholar 

  2. Fratila D (2010) Macro-level environmental comparison of near-dry machining and flood machining. J Clean Prod 18:1031–1039

    Article  Google Scholar 

  3. Rapeti P, Pasam VK, Rao Gurram KM, Revuru RS (2018) Performance evaluation of vegetable oil based nano cutting fluids in machining using grey relational analysis—a step towards sustainable manufacturing. J Clean Prod 172:2862–2875

    Article  Google Scholar 

  4. Hens L, Block C, Cabello-Eras JJ, Sagastume-Gutierez A, Garcia-Lorenzo D, Chamorro C, Herrera Mendoza K, Haeseldonckx D, Vandecasteele C (2018) On the evolution of “cleaner production” as a concept and a practice. J Clean Prod 172:3323–3333

    Article  Google Scholar 

  5. Simon L, Moraes CAM, Modolo RCE, Vargas M, Calheiro D, Brehm FA (2017) Recycling of contaminated metallic chip based on eco-efficiency and eco-effectiveness approaches. J Clean Prod 153:417–424

    Article  Google Scholar 

  6. Dahmus JB, Gutowski TG (2004) An environmental analysis of machining, ASME 2004 international mechanical engineering congress and exposition. Am Soc Mech Eng:643–652

  7. Feng W, Yin Y, de Lourdes Mendoza M, Wang L, Chen P, Liu Y, Cai L, Zhang L (2018) Oil recovery from waste cutting fluid via the combination of suspension crystallization and freeze-thaw processes. J Clean Prod 172:481–487

    Article  Google Scholar 

  8. Chetan, S. Ghosh, P.V. Rao Application of sustainable techniques in metal cutting for enhanced machinability: a review J Clean Prod (2015) 17-34.

  9. ANP, Relatório Técnico No 2/2016/SBQ/CPT—DF: Panorama Dos Óleos Básicos No Brasil—Projeto: Revisão Das Portarias ANP N° 129/99 e N° 130/99 Brasília—DF, 2016.

  10. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    Article  Google Scholar 

  11. Srikant RR (2015) V.S.N.V. Ramana performance evaluation of vegetable emulsifier based green cutting fluid in turning of American Iron and Steel Institute (AISI) 1040 steel—an initiative towards sustainable manufacturing. J Clean Prod:104–109

  12. Alves SM, de Oliveira JFG (2006) Development of new cutting fluid for grinding process adjusting mechanical performance and environmental impact. J Mater Process Technol 179:185–189

    Article  Google Scholar 

  13. Mannekote JK, Kailas SV, Venkatesh K (2017) N. Kathyayini Environmentally friendly functional fluids from renewable and sustainable sources—a review. Renew Sust Energ Rev

  14. Krishna PV, Srikant RR, Rao DN (2010) Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int J Mach Tools Manuf:911–916

  15. Abdul Sani AS, Rahim EA, Sharif S, Sasahara H (2019) The influence of modified vegetable oils on tool failure mode and wear mechanisms when turning AISI 1045. Tribol Int 129:347–362

    Article  Google Scholar 

  16. Padmini R, Krishna PV, Rao GKM (2016) Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribol Int:490–501

  17. Ozcelik B, Kuram E, Cetin MH, Demirbas E (2011) Experimental investigations of vegetable-based cutting fluids with extreme pressure during turning of AISI 304L. Tribol Int:1864–1871

  18. Gajrani KK, Suvin PS, Kailas SV, Mamilla RS (2019) Thermal, rheological, wettability and hard machining performance of MoS2 and CaF2 based minimum quantity hybrid nano-green cutting fluids. J Mater Process Technol 266:125–139

    Article  Google Scholar 

  19. V. Luchesi, R. Coelho 2012 Experimental investigations of heat transfer coefficients of cutting fluids in metal cutting processes: analysis of workpiece phenomena in a given case study, .

  20. Su Y, Gong L, Li B, Liu Z, Chen D (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83:2083–2089

    Article  Google Scholar 

  21. Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X, Guo S, Liu G, Zhai M (2017) Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. J Manuf Process 26:94–104

    Article  Google Scholar 

  22. Da Silva LRR, Ruzzi RS, Teles VC, Sales WF, Guesser WL, Machado AR (2019) Analysis of the coefficient of friction at the workpiece-tool interface in milling of high strength compacted graphite cast irons. Wear

  23. Talib N, Sasahara H, Rahim EA (2017) Evaluation of modified jatropha-based oil with hexagonal boron nitride particle as a biolubricant in orthogonal cutting process. Int J Adv Manuf Technol 92:371–391

    Article  Google Scholar 

  24. Bahari A, Investigatioen into tribological performance of vegetable oils as biolubricants at severe contact conditions, University of Sheffield, 2017.

  25. A.S. Araújo Junior, W.F. Sales, R.B. da Silva, E.S. Costa, A.R. Machado Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing J Clean Prod (2017) 635-647

  26. Lima F, Falco Sales W, Costa ES, Da Silva F, Machado A 2016 Wear of ceramic tools when machining Inconel 751 using argon and oxygen as lubri-cooling atmospheres

  27. Oliveira Júnior MM (2013) Lubrificação sólida em meio fluido. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  28. Sales WF, Diniz AE, Machado AR (2001) Application of cutting fluids in machining processes. J Braz Soc Mech Sci 23:225–240

    Article  Google Scholar 

  29. Manoj Kumar K, Ghosh A (2016) Assessment of cooling-lubrication and wettability characteristics of nano-engineered sunflower oil as cutting fluid and its impact on SQCL grinding performance. J Mater Process Technol 237:55–64

    Article  Google Scholar 

  30. ASTM, Standard test method for dynamic viscosity and density of liquids by stabinger viscometer (and the calculation of kinematic viscosity), ASTM International, West Conshohocken, PA, 2016.

  31. ASTM, Standard practice for calculating viscosity index from kinematic viscosity at 40 °C and 100 °C, ASTM International, West Conshohocken, PA, 2016.

  32. Woods S, Green G (2005) Cutting tool engineering magazine, vol 57

    Google Scholar 

  33. Stachowiak G, Batchelor AW (2013) Engineering tribology. Butterworth-Heinemann

  34. Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid—an evolution. Tribol Int:1073–1081

  35. Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. Wiley

  36. E.M. Trent, P.K. Wright, Metal Cutting, Elsevier Science, 2013.

  37. Lawal SA, Choudhury IA, Nukman Y (2013) Evaluation of vegetable and mineral oil-in-water emulsion cutting fluids in turning AISI 4340 steel with coated carbide tools. J Clean Prod:610–618

  38. Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19:2049–2056

    Article  Google Scholar 

  39. Machado AR, Coelho RT, Abrão AM, Da Silva MB (2015) Teoria da Usinagem dos Materiais, São Paulo. In: SP

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Rosa Ribeiro da Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, D.O.A., da Silva, L.R.R., Sopchenski, L. et al. Performance evaluation of vegetable-based cutting fluids in turning of AISI 1050 steel. Int J Adv Manuf Technol 103, 1603–1619 (2019). https://doi.org/10.1007/s00170-019-03636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03636-y

Keywords

Navigation