Skip to main content

Advertisement

Log in

A review on 3D printed matrix polymer composites: its potential and future challenges

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive Manufacturing technology has a significant impact on the modern world because of its ability to fabricate highly complex computerized geometrics. Pure 3D-printed polymer parts have limited potential applications due to inherently inferior mechanical and anisotropic properties. For more utilization and versatility, the addition of fillers has enhanced their functionalities. 3D printing has innovative advantages including low cost, minimal wastage, customized geometry, and ease of material change. This review reveals the development of 3D printing techniques of matrix composite materials with improving properties and their applications in the fields of aerospace, automotive, biomedical, and electronics. A general introduction is given on AM techniques mainly fused deposition modeling (FDM), Powder-liquid 3D printing (PLP), selective laser sintering (SLS), stereolithography (SLA), digital light processing (DLP), and robocasting. Process methodologies and behavior of different filler additives, reinforcement fibers, nanoparticles, and ceramic polymer composites are discussed. Also, some major issues of difficulty including printing parameters, homogeneous desperation of fillers, nozzle clogging due to filler aggregation, void formation, augmented curing time, and anisotropic attributes are addressed. In the end, some capabilities and shortcomings are pointed out for further development of 3D-printing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Standard A (2012) F2792, 2012. Standard terminology for additive manufacturing technologies. ASTM, West Conshohocken

    Google Scholar 

  2. Kodama H (1981) Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52(11):1770–1773

    Google Scholar 

  3. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. Google Patents,

  4. Levy GN, Schindel R, Kruth J-P (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52(2):589–609

    Google Scholar 

  5. Melnikova R, Ehrmann A 2014, Finsterbusch K 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. In: IOP Conference Series: Materials Science and Engineering, vol 1. IOP Publishing, p 012018

  6. Tran P, Ngo TD, Ghazlan A, Hui D (2017) Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Compos Part B: Eng 108:210–223

    Google Scholar 

  7. Tymrak B, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246

    Google Scholar 

  8. Sun Q, Rizvi G, Bellehumeur C, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80

    Google Scholar 

  9. Garcia CR, Correa J, Espalin D, Barton JH, Rumpf RC, Wicker R, Gonzalez V (2012) 3D printing of anisotropic metamaterials. Prog Electromagn Res 34:75–82

    Google Scholar 

  10. Caulfield B, McHugh P, Lohfeld S (2007) Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Process Technol 182(1-3):477–488

    Google Scholar 

  11. Dou J, Zhang Q, Ma M, Gu J (2012) Fast fabrication of epoxy-functionalized magnetic polymer core-shell microspheres using glycidyl methacrylate as monomer via photo-initiated miniemulsion polymerization. J Magn Magn Mater 324(19):3078–3082

    Google Scholar 

  12. Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4(25):5890–5906

    Google Scholar 

  13. Bletzinger K-U, Ramm E (2001) Structural optimization and form finding of light weight structures. Comp Struct 79(22-25):2053–2062

    Google Scholar 

  14. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012

  15. Short DB (2015) Use of 3D printing by museums: educational exhibits, artifact education, and artifact restoration. 3D. Print Addit Manuf 2(4):209–215

    Google Scholar 

  16. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Google Scholar 

  17. Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28(2):113–122

    Google Scholar 

  18. Makovec R (2010) Digital technologies in dental laboratories. Annals of DAAAM & Proceedings:p1579

  19. Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T (2009) Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med 20(6):1281–1289

    Google Scholar 

  20. Malhotra SK, Goda K, Sreekala MS (2012) Part one introduction to polymer composites. Polym Compos 1

  21. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5-8):1191–1203

    Google Scholar 

  22. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53

    Google Scholar 

  23. Majeed A, Lv J, Peng T (2019) A framework for big data driven process analysis and optimization for additive manufacturing. Rapid Prototyp J 25(2):308–321. https://doi.org/10.1108/RPJ-04-2017-0075

    Article  Google Scholar 

  24. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Google Scholar 

  25. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: A review and prospective. Compos Part B: Eng 110:442–458

    Google Scholar 

  26. Noorani R (2006) Rapid prototyping: principles and applications.

  27. Cooper KG (2001) Rapid prototyping technology, vol 200. Marcel Dekker New York, New York

    Google Scholar 

  28. Mançanares CG, Zancul ES, da Silva JC, Miguel PAC (2015) Additive manufacturing process selection based on parts’ selection criteria. Int J Adv Manuf Technol 80(5-8):1007–1014

    Google Scholar 

  29. Cho Y, Lee I, Cho D-W (2005) Laser scanning path generation considering photopolymer solidification in micro-stereolithography. Microsyst Technol 11(2-3):158–167

    Google Scholar 

  30. Diegel O, Withell A, de Beer D, Potgieter J, Noble FK (2012) Low-cost 3D printing of controlled porosity ceramic parts. IJAT 6(5):618–626

    Google Scholar 

  31. Halloran JW, Tomeckova V, Gentry S, Das S, Cilino P, Yuan D, Guo R, Rudraraju A, Shao P, Wu T (2011) Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc 31(14):2613–2619

    Google Scholar 

  32. Utela B, Storti D, Anderson R, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 10(2):96–104

    Google Scholar 

  33. Gu D, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Google Scholar 

  34. Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim Y-J (2017) Lasers in additive manufacturing: a review. Int J Precis Eng Manuf-Green Technol 4(3):307–322

    Google Scholar 

  35. Brooks G, Kinsley K, Owens T (2014) 3D printing as a consumer technology business model. Int J Manag Inf Syst (Online) 18(4):271

    Google Scholar 

  36. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4

    Google Scholar 

  37. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    Google Scholar 

  38. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114

    Google Scholar 

  39. Edgar J, Tint S (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Johnson Matthey Technol Rev 59(3):193–198

    Google Scholar 

  40. Cooperstein I, Layani M, Magdassi S (2015) 3D printing of porous structures by UV-curable O/W emulsion for fabrication of conductive objects. J Mater Chem C 3(9):2040–2044

    Google Scholar 

  41. Saari M, Cox B, Richer E, Krueger PS, Cohen AL (2015) Fiber encapsulation additive manufacturing: an enabling technology for 3D printing of electromechanical devices and robotic components. 3D. Print Addit Manuf 2(1):32–39

    Google Scholar 

  42. Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Materials and Structures 23(9):094007

    Google Scholar 

  43. Takezawa A, Kobashi M (2017) Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing. Compos Part B Eng 131:21–29

    Google Scholar 

  44. Nikzad M, Masood S, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32(6):3448–3456

    Google Scholar 

  45. Hwang S, Reyes EI, K-s M, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777

    Google Scholar 

  46. Ayrilmis N, Kariz M, Kwon JH, Kuzman MK (2019) Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int J Adv Manuf Technol 102(5-8):2195–2200

    Google Scholar 

  47. Boparai K, Singh R, Singh H (2015) Comparison of tribological behaviour for Nylon6-Al-Al2O3 and ABS parts fabricated by fused deposition modelling: this paper reports a low cost composite material that is more wear-resistant than conventional ABS. Virtual Phys Prototyp 10(2):59–66

    Google Scholar 

  48. Castles F, Isakov D, Lui A, Lei Q, Dancer C, Wang Y, Janurudin J, Speller S, Grovenor C, Grant PS (2016) Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci Rep 6:22714

    Google Scholar 

  49. Shemelya CM, Rivera A, Perez AT, Rocha C, Liang M, Yu X, Kief C, Alexander D, Stegeman J, Xin H (2015) Mechanical, electromagnetic, and x-ray shielding characterization of a 3D printable tungsten–polycarbonate polymer matrix composite for space-based applications. J Electron Mater 44(8):2598–2607

    Google Scholar 

  50. Perez ART, Roberson DA, Wicker RB (2014) Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14(3):343–353

    Google Scholar 

  51. Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6:8641

    Google Scholar 

  52. Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:8643

    Google Scholar 

  53. Chung H, Das S (2006) Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater Sci Eng: A 437(2):226–234

    Google Scholar 

  54. Kurimoto M, Yamashita Y, Ozaki H, Kato T, Funabashi T 2015, Suzuoki Y 3D printing of conical insulating spacer using alumina/UV-cured-resin composite. In: Electrical insulation and dielectric phenomena (CEIDP), IEEE Conference on, 2015. IEEE, pp 463-466

  55. Kalsoom U, Peristyy A, Nesterenko P, Paull B (2016) A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv 6(44):38140–38147

    Google Scholar 

  56. Chung D (2001) Materials for thermal conduction. Appl Therm Eng 21(16):1593–1605

    Google Scholar 

  57. Ahn S-H, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257

    Google Scholar 

  58. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243. https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  59. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng: A 301(2):125–130

    Google Scholar 

  60. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150

    Google Scholar 

  61. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B: Eng 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  62. Carneiro OS, Silva A, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776

    Google Scholar 

  63. Wang J, Xie H, Weng Z, Senthil T, Wu L (2016) A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater Des 105:152–159

    Google Scholar 

  64. Shofner M, Lozano K, Rodríguez-Macías F, Barrera E (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89(11):3081–3090

    Google Scholar 

  65. Shofner M, Rodríguez-Macías F, Vaidyanathan R, Barrera E (2003) Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Compos Part A: Appl Sci Manuf 34(12):1207–1217

    Google Scholar 

  66. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114

    Google Scholar 

  67. Matsuzaki R, Ueda M, Namiki M, Jeong T-K, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6:23058

    Google Scholar 

  68. Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225

    Google Scholar 

  69. Nakagawa Y, K-i M, Maeno T (2017) 3D printing of carbon fibre-reinforced plastic parts. Int J Adv Manuf Technol 91(5-8):2811–2817

    Google Scholar 

  70. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Research on rapid-prototyping/part manufacturing (RP&M) for the continuous fiber reinforced composite. Mater Manuf Process 16(1):17–26

    Google Scholar 

  71. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935

    Google Scholar 

  72. Van Der Klift F, Koga Y, Todoroki A, Ueda M, Hirano Y, Matsuzaki R (2015) 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open J Compos Mater 6(01):18

    Google Scholar 

  73. Goodridge R, Shofner M, Hague R, McClelland M, Schlea M, Johnson R, Tuck C (2011) Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30(1):94–100

    Google Scholar 

  74. Love LJ, Kunc V, Rios O, Duty CE, Elliott AM, Post BK, Smith RJ, Blue CA (2014) The importance of carbon fiber to polymer additive manufacturing. J Mater Res 29(17):1893–1898

    Google Scholar 

  75. Ning F, Cong W, Jia Z, Wang F, Zhang M 2016 Additive manufacturing of CFRP composites using fused deposition modeling: effects of process parameters. In: ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, pp V003T008A001-V003T008A001

  76. Griffini G, Invernizzi M, Levi M, Natale G, Postiglione G, Turri S (2016) 3D-printable CFR polymer composites with dual-cure sequential IPNs. Polymer 91:174–179

    Google Scholar 

  77. Namiki M, Ueda M, Todoroki A, Hirano Y, Matsuzaki R (2014) 3D printing of continuous fiber reinforced plastic. Proceedings of the Society of the Advancement of Material and Process Engineering (45):187-196

  78. K-i M, Maeno T, Nakagawa Y (2014) Dieless forming of carbon fibre reinforced plastic parts using 3D printer. Procedia Eng 81:1595–1600

    Google Scholar 

  79. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561

    Google Scholar 

  80. Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35(6):1087–1092

    Google Scholar 

  81. Gu J, Li N, Tian L, Lv Z, Zhang Q (2015) High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv 5(46):36334–36339

    Google Scholar 

  82. Wang FX, Yang Q, Zhou Z, Gou J 2014 Processing and characterization of helical carbon nanotube paper based thermoplastic nanocomposite films. In: Conference: CAMX, pp 1-9

  83. Yan X, Gu J, Zheng G, Guo J, Galaska AM, Yu J, Khan MA, Sun L, Young DP, Zhang Q (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327

    Google Scholar 

  84. Tang Y-S, Kong J, Gu J-W, Liang G-Z (2009) Reinforced cyanate ester resins with carbon nanotubes: surface modification, reaction activity and mechanical properties analyses. Polym-Plast Technol Eng 48(4):359–366

    Google Scholar 

  85. Lu H, Wang X, Yao Y, Gou J, Hui D, Xu B, Fu Y (2015) Synergistic effect of siloxane modified aluminum nanopowders and carbon fiber on electrothermal efficiency of polymeric shape memory nanocomposite. Compos Part B: Eng 80:1–6

    Google Scholar 

  86. Zhan H, Cheng F, Chen Y, Wong KW, Mei J, Hui D, Lau WM, Liu Y (2016) Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate. Compos Part B: Eng 84:222–227

    Google Scholar 

  87. Weng Z, Wang J, Senthil T, Wu L (2016) Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Des 102:276–283

    Google Scholar 

  88. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181

    Google Scholar 

  89. Hector Sandoval J, Wicker RB (2006) Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyp J 12(5):292–303

    Google Scholar 

  90. Lin D, Jin S, Zhang F, Wang C, Wang Y, Zhou C, Cheng GJ (2015) 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43):434003

    Google Scholar 

  91. Yugang D, Yuan Z, Yiping T, Dichen L (2011) Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyp J 17(4):247–252

    Google Scholar 

  92. Kim K, Zhu W, Qu X, Aaronson C, McCall WR, Chen S, Sirbuly DJ (2014) 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8(10):9799–9806

    Google Scholar 

  93. Zhang Y, Li H, Yang X, Zhang T, Zhu K, Si W, Liu Z, Sun H (2018) Additive manufacturing of carbon nanotube-photopolymer composite radar absorbing materials. Polym Compos 39(S2):E671–E676

    Google Scholar 

  94. Athreya SR, Kalaitzidou K, Das S (2010) Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater Sci Eng: A 527(10-11):2637–2642

    Google Scholar 

  95. Zheng H, Zhang J, Lu S, Wang G, Xu Z (2006) Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS. Mater Lett 60(9-10):1219–1223

    Google Scholar 

  96. Kim HC, Hahn HT, Yang YS (2013) Synthesis of PA12/functionalized GNP nanocomposite powders for the selective laser sintering process. J Compos Mater 47(4):501–509

    Google Scholar 

  97. Lin D, Liu CR, Cheng GJ (2014) Single-layer graphene oxide reinforced metal matrix composites by laser sintering: microstructure and mechanical property enhancement. Acta Mater 80:183–193

    Google Scholar 

  98. Guo S-z, Yang X, Heuzey M-C, Therriault D (2015) 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7(15):6451–6456

    Google Scholar 

  99. Krivec M, Roshanghias A, Abram A, Binder A (2017) Exploiting the combination of 3D polymer printing and inkjet Ag-nanoparticle printing for advanced packaging. Microelectron Eng 176:1–5

    Google Scholar 

  100. Rymansaib Z, Iravani P, Emslie E, Medvidović-Kosanović M, Sak-Bosnar M, Verdejo R, Marken F (2016) All-polystyrene 3D-printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor. Electroanalysis 28(7):1517–1523

    Google Scholar 

  101. Elliott A, Ivanova O, Williams C, Campbell T (2012) An investigation of the effects of quantum dot nanoparticles on photopolymer resin for use in polyjet direct 3D printing. Proceedings of the 2012 SFF SSymposium

  102. Chizari K, Daoud MA, Ravindran AR, Therriault D (2016) 3D Printing of highly conductive nanocomposites for the functional optimization of liquid sensors. Small 12(44):6076–6082

    Google Scholar 

  103. Chung H, Das S (2008) Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater Sci Eng: A 487(1-2):251–257

    Google Scholar 

  104. Chu T, Szczepkowski K, Wagner W, Halloran J Experimental ceramic suspensions for stereolithography processing of implants. In: Journal of Dental Research, 1996. AMER ASSOC DENTAL RESEARCH 1619 DUKE ST, ALEXANDRIA, VA 22314, pp 3046-3046

  105. Giberti H, Strano M, Annoni M 2016 An innovative machine for fused deposition modeling of metals and advanced ceramics. In: MATEC web of conferences, EDP Sciences, p 03003

  106. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, Schnabelrauch M (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18(5):909–916

    Google Scholar 

  107. Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z (2016) 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc 36(6):1495–1503

    Google Scholar 

  108. Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M (2011) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 7(6):2644–2650

    Google Scholar 

  109. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res Part B Appl Biomater 74(2):782–788

    Google Scholar 

  110. Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B (2011) In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl 26(3):359–380

    Google Scholar 

  111. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Google Scholar 

  112. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567

    Google Scholar 

  113. Lam CXF, Mo X, Teoh S-H, Hutmacher D (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1-2):49–56

    Google Scholar 

  114. Zhou Z, Cunningham E, Lennon A, McCarthy HO, Buchanan F, Dunne N (2018) Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Mater Sci Eng C 93:975–986

    Google Scholar 

  115. Vaezi M, Chua CK (2011) Effects of layer thickness and binder saturation level parameters on 3D printing process. Int J Adv Manuf Technol 53(1-4):275–284

    Google Scholar 

  116. Glasschroeder J, Prager E, Zaeh MF (2015) Powder-bed-based 3D-printing of function integrated parts. Rapid Prototyp J 21(2):207–215

    Google Scholar 

  117. Zanchetta E, Cattaldo M, Franchin G, Schwentenwein M, Homa J, Brusatin G, Colombo P (2016) Stereolithography of SiOC ceramic microcomponents. Adv Mater 28(2):370–376

    Google Scholar 

  118. Suwanprateeb J (2006) Improvement in mechanical properties of three-dimensional printing parts made from natural polymers reinforced by acrylate resin for biomedical applications: a double infiltration approach. Polym Int 55(1):57–62

    Google Scholar 

  119. Hui D, Goodridge R, Scotchford C, Grant D (2018) Laser sintering of nano-hydroxyapatite coated polyamide 12 powders. Addit Manuf 22:560–570

    Google Scholar 

  120. Schwentenwein M, Homa J (2015) Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 12(1):1–7

    Google Scholar 

  121. Zhang S, Miyanaji H, Yang L, Ali A, Dilip J 2014 An experimental study of ceramic dental porcelain materials using a 3D print (3DP) process. In: Proceeding of Solid Freeform Fabrication (SFF) Symposium, pp 991-1011

  122. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Google Scholar 

  123. Wu S, Liu X, Yeung KW, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36

    Google Scholar 

  124. Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9(3):174–190

    Google Scholar 

  125. Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3):907–920

    Google Scholar 

  126. Irsen SH, Leukers B, Höckling C, Tille C, Seitz H (2006) Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwiss Werkst 37(6):533–537

    Google Scholar 

  127. White AA, Best SM, Kinloch IA (2007) Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4(1):1–13

    Google Scholar 

  128. Burguera EF, Xu HH, Takagi S, Chow LC (2005) High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers. J Biomed Mater Res Part A 75(4):966–975

    Google Scholar 

  129. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5-8):1721–1754

    Google Scholar 

  130. Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington:3

  131. Wohlers T (2014) Tracking global growth in industrial-scale additive manufacturing. 3D. Print Addit Manuf 1(1):2–3

    Google Scholar 

  132. Liao Y, Li H, Chiu Y (2006) Study of laminated object manufacturing with separately applied heating and pressing. Int J Adv Manuf Technol 27(7-8):703–707

    Google Scholar 

  133. Invernizzi M, Natale G, Levi M, Turri S, Griffini G (2016) UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials 9(7):583

    Google Scholar 

  134. Appleyard D (2015) Powering up on powder technology. Met Powder Rep 70(6):285–289

    Google Scholar 

  135. Watkins T, Bilheux H, An K, Payzant A, Dehoff R, Duty C, Peter W, Blue C, Brice CA (2013) Neutron characterization for additive manufacturing.

  136. Bassett K, Carriveau R, Ting D-K (2015) 3D printed wind turbines part 1: Design considerations and rapid manufacture potential. Sustain Energy Technol Assess 11:186–193

    Google Scholar 

  137. Misra AK, Grady JE, Carter R (2015) Additive manufacturing of aerospace propulsion components.

  138. Objects Impossible. http://impossible-objects.com/. Accessed 21/02/2019

  139. Wang Y-C, Chen T, Yeh Y-L (2018) Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. The International Journal of Advanced Manufacturing Technology:1-11

  140. A world first: additively manufactured titanium components now onboard the Airbus A350 XWB. https://www.etmm-online.com/a-world-first-additively-manufactured-titanium-components-now-onboard-the-airbus-a350-xwb-a-486310/. Accessed 25/02/2019

  141. Fit to print: new plant will assemble world’s first passenger jet engine with 3d printed fuel nozzles, Next-Gen Materials. https://www.ge.com/reports/post/80701924024/fit-to-print/. Accessed 25/02/2019.

  142. Stratasys|3D printing solutions for aerospace. https://www.stratasys.com/aerospace. Accessed 25/02/2019

  143. Grady JE, Haller WJ, Poinsatte PE, Halbig MC, Schnulo SL, Singh M, Weir D, Wali N, Vinup M, Jones MG (2015) A fully non-metallic gas turbine engine enabled by additive manufacturing part I: system analysis, component identification, additive manufacturing, and testing of polymer composites.

  144. Kumar S, Kruth J-P (2010) Composites by rapid prototyping technology. Mater Des 31(2):850–856

    Google Scholar 

  145. Garcia-Gonzalez D, Garzon-Hernandez S, Arias A (2018) A new constitutive model for polymeric matrices: application to biomedical materials. Compos Part B Eng 139:117–129

    Google Scholar 

  146. Jardini AL, Larosa MA, Maciel Filho R, de Carvalho Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P (2014) Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio Maxillofac Surg 42(8):1877–1884

    Google Scholar 

  147. Banks J (2013) Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6):22–26

    Google Scholar 

  148. Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk A, Dimitroulis G (2017) A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: from implant design to implantation. J Mech Behav Biomed Mater 69:404–411

    Google Scholar 

  149. Driemel O, Braun S, Müller-Richter U, Behr M, Reichert T, Kunkel M, Reich R (2009) Historical development of alloplastic temporomandibular joint replacement after 1945 and state of the art. Int J Oral Maxillofac Surg 38(9):909–920

    Google Scholar 

  150. Johnson N, Roberts M, Doi S, Batstone M (2017) Total temporomandibular joint replacement prostheses: a systematic review and bias-adjusted meta-analysis. Int J Oral Maxillofac Surg 46(1):86–92

    Google Scholar 

  151. Ramos A, Mesnard M (2016) A new condyle implant design concept for an alloplastic temporomandibular joint in bone resorption cases. J Cranio Maxillofac Surg 44(10):1670–1677

    Google Scholar 

  152. Chen RK, Y-a J, Wensman J, Shih A (2016) Additive manufacturing of custom orthoses and prostheses—a review. Addit Manuf 12:77–89

    Google Scholar 

  153. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliver Rev 108:39–50

    Google Scholar 

  154. Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S (2013) Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomed 8:4197

    Google Scholar 

  155. Dávila J, Freitas MSD, Inforçatti Neto P, Silveira ZDC, Silva JVLD, d’Ávila MA (2016) Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J Appl Polym Sci 133 (15)

    Google Scholar 

  156. Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, Zhang C (2014) 3D-printed magnetic Fe 3 O 4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2(43):7583–7595

    Google Scholar 

  157. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4):4636–4648

    Google Scholar 

  158. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnol 34(3):312–319

    Google Scholar 

  159. Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103

    Google Scholar 

  160. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639

    Google Scholar 

  161. Duan B (2017) State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng 45(1):195–209

    Google Scholar 

  162. Markstedt K, Mantas A, Tournier I, Hc MÁ, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496

    Google Scholar 

  163. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, Fricain J-C, Catros S (2010) In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2(1):014101

    Google Scholar 

  164. Robbins JB, Gorgen V, Min P, Shepherd BR, Presnell SC (2013) A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB J 27(872):812

    Google Scholar 

  165. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368(21):2043–2045

    Google Scholar 

  166. Macdonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker RB (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242

    Google Scholar 

  167. Nassar IT, Tsang H, Church K, Weller TM A 2014 high efficiency, electrically-small, 3-D machined-substrate antenna fabricated with fused deposition modeling and 3-D printing. In: 2014 IEEE Radio and Wireless Symposium (RWS), IEEE, pp 67-69

  168. Zhou W, List FA, Duty CE, Babu SS (2016) Fabrication of conductive paths on a fused deposition modeling substrate using inkjet deposition. Rapid Prototyp J 22(1):77–86

    Google Scholar 

  169. Joe Lopes A, MacDonald E, Wicker RB (2012) Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rap Prototyp J 18(2):129–143

    Google Scholar 

  170. Lopes AJ, Lee IH, MacDonald E, Quintana R, Wicker R (2014) Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. J Mater Process Technol 214(9):1935–1945

    Google Scholar 

  171. Palmer JA, Summers JL, Davis DW, Gallegos PL, Chavez BD, Yang P, Medina F, Wicker RB 2005 Realizing 3-D interconnected direct write electronics within smart stereolithography structures. In: ASME 2005 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp 287-293

  172. Perez KB, Williams CB 2013 Combining additive manufacturing and direct write for integrated electronics—a review. In: 24th International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF, pp 962-979

  173. Wang J, Auyeung RC, Kim H, Charipar NA, Piqué A (2010) Three-dimensional printing of interconnects by laser direct-write of silver nanopastes. Adv Mater 22(40):4462–4466

    Google Scholar 

  174. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park S-J, Kotikian A, Nesmith AP, Campbell PH (2017) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16(3):303

    Google Scholar 

  175. Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921):1590–1593

    Google Scholar 

  176. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS One 7(11):e49365

    Google Scholar 

  177. Czyżewski J, Burzyński P, Gaweł K, Meisner J (2009) Rapid prototyping of electrically conductive components using 3D printing technology. J Mater Process Technol 209(12-13):5281–5285

    Google Scholar 

  178. Espalin D, Muse DW, MacDonald E, Wicker RB (2014) 3D Printing multifunctionality: structures with electronics. Int J Adv Manuf Technol 72(5-8):963–978

    Google Scholar 

  179. Ready S, Endicott F, Whiting GL, Ng TN, Chow EM, Lu J 2013 3D printed electronics. In: NIP & digital fabrication conference, vol 1. Society for Imaging Science and technology, pp 9-12

  180. Aguilera E, Ramos J, Espalin D, Cedillos F, Muse D, Wicker R, MacDonald E 2013 3D printing of electro mechanical systems. In: Proceedings of the Solid Freeform Fabrication Symposium, pp 950-961

  181. Sarik J, Butler A, Scott J, Hodges S, Villar N (2012) Combining 3D printing and printable electronics.

  182. Yu Y-Z, Lu J-R, Liu J (2017) 3D printing for functional electronics by injection and package of liquid metals into channels of mechanical structures. Mater Des 122:80–89

    Google Scholar 

  183. Tanwilaisiri A, Xu Y, Zhang R, Harrison D, Fyson J, Areir M (2018) Design and fabrication of modular supercapacitors using 3D printing. J Energy Storage 16:1–7

    Google Scholar 

  184. Tilford T, Stoyanov S, Braun J, Janhsen JC, Burgard M, Birch R, Bailey C (2018) Design, manufacture and test for reliable 3D printed electronics packaging. Microelectron Reliab 85:109–117

    Google Scholar 

  185. Qiao H, Zhang Y, Huang Z, Wang Y, Li D, Zhou H (2018) 3D printing individualized triboelectric nanogenerator with macro-pattern. Nano Energy 50:126–132

    Google Scholar 

Download references

Funding

This research was sponsored by National Natural Science Foundation of China (Grant No. 51905438), the Innovation Platform of Biofabrication (Grant No.17SF0002), the Fundamental Research Funds for the Central Universities (Grant No. 31020190502009, 31020190504002), and the key Research and Development Program of Shaanxi Province 2018 (Grant No. 2018ZDXM-GY-133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanen Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroia, J., Wang, Y., Wei, Q. et al. A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol 106, 1695–1721 (2020). https://doi.org/10.1007/s00170-019-04534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04534-z

Keywords

Navigation