Skip to main content

Advertisement

Log in

Effect of process parameters on mechanical properties of VeroBlue material and their optimal selection in PolyJet technology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

PolyJet technology is one of the additive manufacturing technologies, which can produce complex geometries with variety of textures. The 3D printed complex geometry parts need better mechanical behaviour. The mechanical properties of a fabricated product depend on several process parameters such as build orientation, layer thickness, material and surface finish. This paper aims to study the effect of printing mode and type of surface finish on the mechanical properties of VeroBlue material used in PolyJet technology. The tensile, flexural and shore hardness tests are carried out to determine the mechanical response of the fabricated specimen. Four different combinations are derived from printing mode (high quality (HQ) and high speed (HS)) and finish type (matte (M) and glossy (G)). Findings indicate the HS-G specimens have better mechanical property and are faster in production and cheaper than HQ-M, HQ-G and HS-M. Highest average tensile strength of the HS-G (49.77 MPa) is deviated by 11.19% from standard value. Tensile specimens of HS-G save 60.86% of printing time and 14.72% of cost than HQ-G. This research paper provides a unique way of meeting optimal selection process parameters. Finally, a case study was carried out for the selected application with optimized process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing in the spare parts supply chain. Comput Ind 65(1):50–63. https://doi.org/10.1016/j.compind.2013.07.008

    Article  Google Scholar 

  2. Petrovic V, Vicente Haro Gonzalez J, Jordá Ferrando O, Delgado Gordillo J, Ramón Blasco Puchades J, Portolés Griñan L (2011) Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res 49(4):1061–1079. https://doi.org/10.1080/00207540903479786

    Article  Google Scholar 

  3. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  4. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9):1147–1155. https://doi.org/10.1007/s00170-011-3878-1

    Article  Google Scholar 

  5. Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):604–617. https://doi.org/10.1108/RPJ-09-2014-0135

    Article  Google Scholar 

  6. Barclift MW, Williams C (2012) Examining variability in the mechanical properties of parts manufactured via polyjet direct 3D printing. In: International. Solid Freeform Fabrication Symposium Proceddings, Austin

  7. Gaynor AT, Meisel NA, Williams CB, Guest JK (2014) Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J Manuf Sci Eng 136(6). https://doi.org/10.1115/1.4028439

  8. Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169(1):54–61. https://doi.org/10.1016/j.jmatprotec.2005.02.259

    Article  Google Scholar 

  9. Conner BP, Manogharan GP, Martof AN, Rodomsky LM, Rodomsky CM, Jordan DC, Limperos JW (2014) Making sense of 3-D printing: creating a map of additive manufacturing products and services. Addit Manuf 1-4:64–76. https://doi.org/10.1016/j.addma.2014.08.005

    Article  Google Scholar 

  10. Tang Y, Yang S, Zhao YF (2016) Sustainable design for additive manufacturing through functionality integration and part consolidation. In: Muthu SS, Savalani MM (eds) Handbook of sustainability in additive manufacturing, vol 1. Springer, Singapore, pp 101–144. https://doi.org/10.1007/978-981-10-0549-7_6

    Chapter  Google Scholar 

  11. Rosato DV, Rosato DV, Rosato MV (2004) 11 - casting. In: Rosato DV, Rosato DV, Rosato MV (eds) Plastic product material and process selection handbook. Elsevier, Oxford, pp 394–405. https://doi.org/10.1016/B978-185617431-2/50014-1

    Chapter  MATH  Google Scholar 

  12. Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  13. Yap YL, Wang C, Sing SL, Dikshit V, Yeong WY, Wei J (2017) Material jetting additive manufacturing: an experimental study using designed metrological benchmarks. Precis Eng 50:275–285. https://doi.org/10.1016/j.precisioneng.2017.05.015

    Article  Google Scholar 

  14. Tapia G, Khairallah S, Matthews M, King WE, Elwany A (2018) Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int J Adv Manuf Technol 94(9):3591–3603. https://doi.org/10.1007/s00170-017-1045-z

    Article  Google Scholar 

  15. Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180. https://doi.org/10.1016/j.rcim.2017.06.006

    Article  Google Scholar 

  16. Yi H, Qi L, Luo J, Zhang D, Li H, Hou X (2018) Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int J Mach Tools Manuf 130-131:1–11. https://doi.org/10.1016/j.ijmachtools.2018.03.006

    Article  Google Scholar 

  17. Yi H, Qi L, Luo J, Li N (2019) Hole-defects in soluble core assisted aluminum droplet printing: metallurgical mechanisms and elimination methods. Appl Therm Eng 148:1183–1193. https://doi.org/10.1016/j.applthermaleng.2018.12.013

    Article  Google Scholar 

  18. Ramola M (2019) On the adoption of additive manufacturing in healthcare: a literature review. J Manuf Technol Manag 30(1):48–69. https://doi.org/10.1108/JMTM-03-2018-0094

    Article  Google Scholar 

  19. Nelson JW, LaValle JJ, Kautzman BD, Dworshak J, Johnson EM, Ulven C (2017) Injection molding with an additive manufacturing tool study shows that 3D printed tools can create parts comparable to those made with P20 tools, at a much lower cost and lead time. Plast Eng 73:60–66

    Article  Google Scholar 

  20. Ashby MF, Bréchet YJM, Cebon D, Salvo L (2004) Selection strategies for materials and processes. Mater Des 25(1):51–67. https://doi.org/10.1016/S0261-3069(03)00159-6

    Article  Google Scholar 

  21. Andres RP, Averback RS, Brown WL, Brus LE, Goddard WA, Kaldor A, Louie SG, Moscovits M, Peercy PS, Riley SJ, Siegel RW, Spaepen F, Wang Y (2011) Research opportunities on clusters and cluster-assembled materials—a Department of Energy, Council on Materials Science Panel Report. J Mater Res 4(3):704–736. https://doi.org/10.1557/JMR.1989.0704

    Article  Google Scholar 

  22. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260. https://doi.org/10.1007/s003390050999

    Article  Google Scholar 

  23. Sahoo S (2017) Simulation study on rapid solidification of eutectic Al-Cu alloy: a molecular dynamics approach. Int J Comput Mater Sci Surf Eng 7(1):18–25

    Google Scholar 

  24. Martukanitz R, Michaleris P, Palmer T, DebRoy T, Liu Z-K, Otis R, Heo TW, Chen L-Q (2014) Toward an integrated computational system for describing the additive manufacturing process for metallic materials. Addit Manuf 1-4:52–63. https://doi.org/10.1016/j.addma.2014.09.002

    Article  Google Scholar 

  25. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  26. Khorasani AM, Yazdi MRS, Safizadeh MS (2012) Analysis of machining parameters effects on surface roughness: a review. Int J Comput Mater Sci Surf Eng 5(1):68–84. https://doi.org/10.1504/ijcmsse.2012.049055

    Article  Google Scholar 

  27. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  28. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA (2014) Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS One 9(9):e108252. https://doi.org/10.1371/journal.pone.0108252

    Article  Google Scholar 

  29. Sufiiarov VS, Popovich AA, Borisov EV, Polozov IA, Masaylo DV, Orlov AV (2017) The effect of layer thickness at selective laser melting. Procedia Eng 174:126–134. https://doi.org/10.1016/j.proeng.2017.01.179

    Article  Google Scholar 

  30. Vukasovic T, Vivanco JF, Celentano D, García-Herrera C (2019) Characterization of the mechanical response of thermoplastic parts fabricated with 3D printing. Int J Adv Manuf Technol 104:4207–4218. https://doi.org/10.1007/s00170-019-04194-z

    Article  Google Scholar 

  31. Bikas H, Lianos AK, Stavropoulos P (2019) A design framework for additive manufacturing. Int J Adv Manuf Technol 103(9):3769–3783. https://doi.org/10.1007/s00170-019-03627-z

    Article  Google Scholar 

  32. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37. https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  33. Park S-I, Rosen DW, S-k C, Duty CE (2014) Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Addit Manuf 1-4:12–23. https://doi.org/10.1016/j.addma.2014.07.002

    Article  Google Scholar 

  34. Samykano M, Selvamani SK, Kadirgama K, Ngui WK, Kanagaraj G, Sudhakar K (2019) Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol 102(9):2779–2796. https://doi.org/10.1007/s00170-019-03313-0

    Article  Google Scholar 

  35. Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760. https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  36. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  37. Choi J-W, Kim H-C, Wicker R (2011) Multi-material stereolithography. J Mater Process Technol 211(3):318–328. https://doi.org/10.1016/j.jmatprotec.2010.10.003

    Article  Google Scholar 

  38. Rajendra Boopathy V (2019) Energy absorbing capability of additive manufactured multi-material honeycomb structure. Rapid Prototyp J 25(3):623–629. https://doi.org/10.1108/RPJ-03-2018-0066

    Article  Google Scholar 

  39. Zhang P, Heyne MA, To AC (2015) Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing. J Mech Phys Solids 83:285–300. https://doi.org/10.1016/j.jmps.2015.06.015

    Article  MathSciNet  Google Scholar 

  40. Kreisköther K, Kampker A, Reinders C (2017) Material and parameter analysis of the polyjet process for mold making using design of experiments. World J Nucl Sci Technol:219–226

  41. Kantareddy SNR, Simpson TW, Ounaies Z, Frecker M (2016) 3d printing of shape changing polymer structures: design and characterization of materials. In: Bourell DL, Crawford RH, Seepersad CC, Beaman JJ, Fish S, Marcus H (eds) Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Texas. Verlag nicht ermittelbar,

  42. Sanders J, Wei X, Pei Z (2019) Experimental investigation of Stratasys J750 PolyJet printer: effects of orientation and layer thickness on thermal glass transition temperature

  43. Reichl KK, Inman DJ (2018) Dynamic mechanical and thermal analyses of Objet Connex 3D printed materials. Exp Tech 42(1):19–25. https://doi.org/10.1007/s40799-017-0223-0

    Article  Google Scholar 

  44. Gouzman I, Atar N, Grossman E, Verker R, Bolker A, Pokrass M, Sultan S, Sinwani O, Wagner A, Lück T, Seifarth C (2019) 3D printing of bismaleimides: from new ink formulation to printed thermosetting polymer objects. Adv Mater Technol 0(0):1–8. https://doi.org/10.1002/admt.201900368

    Article  Google Scholar 

  45. Ganesan S, Ranganathan R (2018) Design and development of customised split insole using additive manufacturing technique. Int J Rapid Manuf 7(4):295–309. https://doi.org/10.1504/ijrapidm.2018.095783

    Article  Google Scholar 

  46. Agnew SR, Yoo MH, Tomé CN (2001) Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater 49(20):4277–4289. https://doi.org/10.1016/S1359-6454(01)00297-X

    Article  Google Scholar 

  47. Desjardins J, Stanley SE, Przestrzelski B, Pruett TC, Hoeffner SL, Kaluf BD (2016) Variable hardness orthotic. Google patents

  48. Biris AS, Mazumder MK, Yurteri CU, Sims RA, Snodgrass J, De S (2001) Gloss and texture control of powder coated films. Part Sci Technol 19(3):199–217. https://doi.org/10.1080/02726350290057804

    Article  Google Scholar 

  49. Moore JP, Williams CB (2015) Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyp J 21(6):675–685. https://doi.org/10.1108/RPJ-03-2014-0031

    Article  Google Scholar 

  50. Stratasys (2016) Objet260 Connex3

  51. Zorzetto L, Ruffoni D (2019) Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance. Adv Funct Mater 29(1):1805888. https://doi.org/10.1002/adfm.201805888

    Article  Google Scholar 

  52. D638–14 A (2014) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken

    Google Scholar 

  53. D790-15e2 A (2015) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken

    Google Scholar 

  54. D2240–15 A (2015) Standard test method for rubber property— durometer hardness. ASTM International, West Conshohocken

    Google Scholar 

  55. Lenard JG (2014) 13 - Severe Plastic Deformation – Accumulative Roll Bonding11Most of the information in this chapter was provided by Dr. Krallics of the Budapest University of Technology and Economics. The experimental portion is based on Krallics and Lenard. In: Lenard JG (ed) Primer on flat rolling, 2nd edn. Elsevier, Oxford, pp 303–322. https://doi.org/10.1016/B978-0-08-099418-5.00013-5

    Chapter  Google Scholar 

  56. Shrivastava A (2018) 3 - plastic properties and testing. In: Shrivastava A (ed) Introduction to plastics engineering. William Andrew publishing, pp 49–110. https://doi.org/10.1016/B978-0-323-39500-7.00003-4

Download references

Funding

We gratefully acknowledge the financial support for establishing the Centre of Excellence in Manufacturing Sciences (CoEMS) at Coimbatore Institute of Technology, Coimbatore; India from Ministry of Human-Resource Development (MHRD), Govt of India where the sample/R&D work is carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arivazhagan Pugalendhi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugalendhi, A., Ranganathan, R. & Chandrasekaran, M. Effect of process parameters on mechanical properties of VeroBlue material and their optimal selection in PolyJet technology. Int J Adv Manuf Technol 108, 1049–1059 (2020). https://doi.org/10.1007/s00170-019-04782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04782-z

Keywords

Navigation