Skip to main content

Advertisement

Log in

Digital twin: current scenario and a case study on a manufacturing process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the current scenario, industries need to have continuous improvement in their manufacturing processes. Digital twin (DT), a virtual representation of a physical entity, serves this purpose. It aims to bridge the prevailing gap between the design and manufacturing stages of a product by effective flow of information. This article aims to create a state-of-the-art review on various DTs with their application areas. The article also includes schematic representations of some of the DTs proposed in various fields. The concept is also represented by a case study based on a DT model developed for an advanced manufacturing process named friction stir welding. Towards the end, a model for implementing DT in a factory has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Carvalho N, Chaim O, Cazarini E, Gerolamo M (2018) Manufacturing in the fourth industrial revolution: a positive prospect in sustainable manufacturing. Procedia Manuf 21:671–678. https://doi.org/10.1016/j.promfg.2018.02.170

    Article  Google Scholar 

  2. Nowotarski P, Paslawski J (2017) Industry 4.0 concept introduction into construction SMEs. IOP Conf Ser mater Sci Eng 245. https://doi.org/10.1088/1757-899X/245/5/052043

  3. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and U.S. Air Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf AIAA/ASME/AHS Adapt Struct Conf AIAA 1–14. https://doi.org/10.2514/6.2012-1818

  4. Liu Z, Meyendorf N, Mrad N (2018) The role of data fusion in predictive maintenance using digital twin. 020023:020023. https://doi.org/10.1063/1.5031520

  5. Bruynseels K, de Sio FS, van den Hoven J (2018) Digital twins in health care: ethical implications of an emerging engineering paradigm. Front Genet 9:1–11. https://doi.org/10.3389/fgene.2018.00031

    Article  Google Scholar 

  6. Graessler I, Poehler A (2018) Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system. IEEE Int Conf Ind Eng Eng Manag 2017-Decem:289–293. https://doi.org/10.1109/IEEM.2017.8289898

  7. Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94:3563–3576. https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  8. Cao H, Folan P (2012) Product life cycle: the evolution of a paradigm and literature review from 1950-2009. Prod Plan Control 23:641–662. https://doi.org/10.1080/09537287.2011.577460

    Article  Google Scholar 

  9. Tao F, Sui F, Liu A, Qi Q, Zhang M, Song B, Guo Z, Lu SCY, Nee AYC (2019) Digital twin-driven product design framework. Int J Prod Res 57:3935–3953. https://doi.org/10.1080/00207543.2018.1443229

    Article  Google Scholar 

  10. Qi Q, Tao F (2018) Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison. IEEE Access 6:3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265

    Article  Google Scholar 

  11. Xiang F, Zhi Z, Jiang G (2018) Digital twins technolgy and its data fusion in iron and steel product life cycle. 2018 Ieee 15Th Int Conf Networking, Sens Control

  12. Zhang H, Zhang G, Yan Q (2018) Dynamic resource allocation optimization for digital twin-driven smart shopfloor. ICNSC 2018 - 15th IEEE Int Conf Networking, Sens Control 1–5. https://doi.org/10.1109/ICNSC.2018.8361283

  13. Tao F, Zhang M (2017) Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5:20418–20427. https://doi.org/10.1109/ACCESS.2017.2756069

    Article  Google Scholar 

  14. Ameri F, Sabbagh R (2016) Digital factories for capability modeling and visualization. Pp 69–78

  15. Vachálek J, Bartalský L, Rovný O, et al (2017) The digital twin of an industrial production line within the Industry 4 . 0 concept. 21st Int Conf Process Control 258–262. https://doi.org/10.1109/PC.2017.7976223

  16. Zhang M, Zuo Y, Tao F (2018) Equipment energy consumption management in digital twin shop-floor: a framework and potential applications. In: 2018 IEEE 15th international conference on networking. Sensing and Control (ICNSC), IEEE, pp 1–5

    Google Scholar 

  17. Zhuang C, Liu J, Xiong H (2018) Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96:1149–1163. https://doi.org/10.1007/s00170-018-1617-6

    Article  Google Scholar 

  18. Wärmefjord K, Söderberg R, Lindkvist L, et al (2017) Shaping the digital twin for design and production engineering. In: Volume 2: advanced manufacturing. ASME, p V002T02A101

  19. Wärmefjord K, Söderberg R, Lindkvist L, et al (2017) Inspection data to support a digital twin for geometry assurance. In: Volume 2: Advanced Manufacturing. ASME, p V002T02A101

  20. Söderberg R, Wärmefjord K, Carlson JS, Lindkvist L (2017) Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann - Manuf Technol 66:137–140. https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  21. He Y, Guo J, Zheng X (2018) From surveillance to digital twin: challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Process Mag 35:120–129. https://doi.org/10.1109/MSP.2018.2842228

    Article  Google Scholar 

  22. Pargmann H, Euhausen D, Faber R (2018) Intelligent big data processing for wind farm monitoring and analysis based on cloud-technologies and digital twins: a quantitative approach. 2018 3rd IEEE Int Conf Cloud Comput Big Data Anal ICCCBDA 2018 233–237. https://doi.org/10.1109/ICCCBDA.2018.8386518

  23. Sivalingam K, Spring M, Sepulveda M, Davies P (2018) A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective - IEEE Conference Publication. 197–204. https://doi.org/10.1109/ICGEA.2018.8356292

  24. Tao F, Zhang M, Liu Y, Nee AYC (2018) Digital twin driven prognostics and health management for complex equipment. CIRP Ann 67:169–172. https://doi.org/10.1016/j.cirp.2018.04.055

    Article  Google Scholar 

  25. Luo W, Hu T, Zhang C, Wei Y (2018) Digital twin for CNC machine tool: modeling and using strategy. J Ambient Intell Humaniz Comput 10:2–5. https://doi.org/10.1007/s12652-018-0946-5

    Article  Google Scholar 

  26. Schroeder G, Steinmetz C, Pereira CE, et al (2017) Visualising the digital twin using web services and augmented reality. IEEE Int Conf Ind Informatics 522–527. https://doi.org/10.1109/INDIN.2016.7819217

  27. Tuegel EJ (2012) The airframe digital twin : some challenges to realization. 1–8

  28. Li C, Mahadevan S, Ling Y, Choze S, Wang L (2017) Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA J 55:930–941. https://doi.org/10.2514/1.J055201

    Article  Google Scholar 

  29. Tuegel EJ, Ingraffea AR, Eason TG, Spottswood SM (2011) Reengineering aircraft structural life prediction using a digital twin. Int J Aerosp Eng 2011:. https://doi.org/10.1155/2011/154798, 2011, 1, 14

  30. Knapp GL, Mukherjee T, Zuback JS, Wei HL, Palmer TA, de A, DebRoy T (2017) Building blocks for a digital twin of additive manufacturing. Acta Mater 135:390–399. https://doi.org/10.1016/j.actamat.2017.06.039

    Article  Google Scholar 

  31. DebRoy T, Zhang W, Turner J, Babu SS (2017) Building digital twins of 3D printing machines. Scr Mater 135:119–124. https://doi.org/10.1016/j.scriptamat.2016.12.005

    Article  Google Scholar 

  32. Zhang H, Liu Q, Chen X, et al (2017) A digital twin-based approach for designing and decoupling of hollow glass production line. IEEE Access 1–1. https://doi.org/10.1109/ACCESS.2017.2766453

  33. Scaglioni B, Ferretti G (2018) Towards digital twins through object-oriented modelling: a machine tool case study. IFAC-PapersOnLine 51:613–618. https://doi.org/10.1016/j.ifacol.2018.03.104

    Article  Google Scholar 

  34. Iglesias D, Bunting P, Esquembri S, Hollocombe J, Silburn S, Vitton-Mea L, Balboa I, Huber A, Matthews GF, Riccardo V, Rimini F, Valcarcel D (2017) Digital twin applications for the JET divertor. Fusion Eng Des 125:71–76. https://doi.org/10.1016/j.fusengdes.2017.10.012

    Article  Google Scholar 

  35. Uhlemann THJ, Schock C, Lehmann C, Freiberger S, Steinhilper R (2017) The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manuf 9:113–120. https://doi.org/10.1016/j.promfg.2017.04.043

    Article  Google Scholar 

  36. Lynch C (2008) Big data: how do your data grow? Nature 455:28–29. https://doi.org/10.1038/455028a

    Article  Google Scholar 

  37. Barnaghi P, Sheth A, Singh V, Hauswirth M (2015) Computing : looking back. Looking Forward. IEEE Internet Comput 19:7–11

    Article  Google Scholar 

  38. Bandaru S, Ng AHC, Deb K (2017) Data mining methods for knowledge discovery in multi-objective optimization: part a - survey. Expert Syst Appl 70:139–159. https://doi.org/10.1016/j.eswa.2016.10.015

    Article  Google Scholar 

  39. Uhlemann THJ, Lehmann C, Steinhilper R (2017) The digital twin: realizing the cyber-physical production system for Industry 4.0. Procedia CIRP 61:335–340. https://doi.org/10.1016/j.procir.2016.11.152

    Article  Google Scholar 

  40. Thomas W, Nicholas E (1997) Friction stir welding for the transportation industries. Mater Des 18:269–273. https://doi.org/10.1016/S0261-3069(97)00062-9

    Article  Google Scholar 

  41. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM Int 368. https://doi.org/10.1361/fswp2007p001

  42. Mehta KP (2019) Sustainability in welding and processing. In: Innovations in Manufacturing for Sustainability. Springer International Publishing, pp 125–145

  43. Chen C, Kovacevic R, Jandgric D (2003) Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. Int J Mach Tools Manuf 43:1383–1390. https://doi.org/10.1016/S0890-6955(03)00130-5

    Article  Google Scholar 

  44. Yang Y, Kalya P, Landers RG, Krishnamurthy K (2008) Automatic gap detection in friction stir butt welding operations. Int J Mach Tools Manuf 48:1161–1169. https://doi.org/10.1016/j.ijmachtools.2008.01.007

    Article  Google Scholar 

  45. Jene T, Dobmann G, Wagner G, Eifler D (2008) Monitoring of the friction stir welding process to describe parameter effects on joint quality. Mater Sci 5454:1–11. https://doi.org/10.1007/BF03266668

    Article  Google Scholar 

  46. Kumar U, Yadav I, Kumari S, Kumari K, Ranjan N, Kesharwani RK, Jain R, Kumar S, Pal S, Chakravarty D, Pal SK (2015) Defect identification in friction stir welding using discrete wavelet analysis. Adv Eng Softw 85:43–50. https://doi.org/10.1016/j.advengsoft.2015.02.001

    Article  Google Scholar 

  47. Kumari S, Jain R, Kumar U, Yadav I, Ranjan N, Kumari K, Kesharwani RK, Kumar S, Pal S, Pal SK, Chakravarty D (2016) Defect identification in friction stir welding using continuous wavelet transform. J Intell Manuf 30:1–12. https://doi.org/10.1007/s10845-016-1259-1

    Article  Google Scholar 

  48. Fleming PA, Lammlein DH, Wilkes DM, Cook GE, Strauss AM, Delapp DR, Hartman DA (2009) Misalignment detection and enabling of seam tracking for friction stir welding. Sci Technol Weld Join 14:93–96. https://doi.org/10.1179/136217108X372568

    Article  Google Scholar 

  49. Bipul Das, Sukhomay Pal SB (2014) Monitoring of friction stir welding process through signals acquired during the welding. In: 5 th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, 2014, IIT Guwahati, Assam, India. pp 1–7

  50. Das B, Bag S, Pal S (2016) Defect detection in friction stir welding process through characterization of signals by fractal dimension. Manuf Lett 7:6–10. https://doi.org/10.1016/j.mfglet.2015.11.006

    Article  Google Scholar 

  51. Mishra D, Roy RB, Dutta S, Pal SK, Chakravarty D (2018) A review on sensor based monitoring and control of friction stir welding process and a roadmap to Industry 4.0. J Manuf Process 36:373–397. https://doi.org/10.1016/j.jmapro.2018.10.016

    Article  Google Scholar 

  52. Soundararajan V, Atharifar H, Kovacevic R (2006) Monitoring and processing the acoustic emission signals from the friction-stir-welding process. Proc Inst Mech Eng Part B J Eng Manuf 220:1673–1685. https://doi.org/10.1243/09544054JEM586

    Article  Google Scholar 

  53. Roy RB, Ghosh A, Bhattacharyya S, Mahto RP, Kumari K, Pal SK, Pal S (2018) Weld defect identification in friction stir welding through optimized wavelet transformation of signals and validation through X-ray micro-CT scan. Int J Adv Manuf Technol 99:623–633. https://doi.org/10.1007/s00170-018-2519-3

    Article  Google Scholar 

  54. Bhat NN, Kumari K, Dutta S, Pal SK, Pal S (2015) Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images. J Manuf Process 20:274–281. https://doi.org/10.1016/j.jmapro.2015.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R.B., Mishra, D., Pal, S.K. et al. Digital twin: current scenario and a case study on a manufacturing process. Int J Adv Manuf Technol 107, 3691–3714 (2020). https://doi.org/10.1007/s00170-020-05306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05306-w

Keywords

Navigation