Skip to main content
Log in

The influence of tool-path strategies and cutting parameters on cutting forces, tool wear and surface quality in finish milling of Aluminium 7075 curved surface

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The curved parts of Aluminium 7075 alloy are extensively used in automotive and aircraft structures. In curved surface milling, the tool-workpiece contact changes continuously varying effective tool radius, active cutting speed and cutting forces all the time during machining. These variations lead to a change in metal removal mechanism from shearing to ploughing and vice-versa that determines the final product quality. In the present work, the tool-path strategies are investigated in the first phase wherein 3D offset found to be the best finishing strategy. Latter, the parametric analysis is performed by conducting the statistically designed experiments with 3D offset strategy to highlight the input-output correlations. The Khattree–Naik’s equation/plot is used to analyse the multivariate data in milling and accordingly the better input parameters are selected. A ball-end tool imparting the entire tool face and cutting the surface from all-around with consistent cutting conditions enhances the tool life with a better finish. The results show that along with the magnitude of the force, a time lag (Δt) and nature of force profile are equally significant in determining the tool wear and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Ra :

Arithmetical mean height of roughness profile (μm)

Rz :

Maximum height of roughness profile within a sampling length (μm)

Rp :

Maximum peak height of the roughness profile (μm)

Rv :

Maximum valley depth of the roughness profile (μm)

r:

Radius of the milling cutter (mm)

re :

Effective radius of the cutter (mm)

Vc:

Cutting speed (m/min)

Ve :

Effective cutting speed (m/min)

f:

Feed rate (mm/rev)

ap :

Axial depth of cut (mm)

ae :

Side step, radial depth of cut (mm)

Fc :

Cutting force (N)

Ff :

Feed force (N)

gy(t):

Khattree–Naik’s function

t:

A parameter in Khattree–Naik’s function

nf :

Number of flutes over a cutting tool

Wa,VB:

Tool wear area (mm2) and length (μm) respectively

θ°:

Lead angle or tool tilt

∆t:

Time lag between two consecutive cutter contacts on a work surface

References

  1. Santos MC, Machado AR, Sales WF, Barrozo MAS, Ezugwu EO (2016) Machining of aluminum alloys: a review. Int J Adv Manuf Technol 86(9):3067–3080. https://doi.org/10.1007/s00170-016-8431-9

    Article  Google Scholar 

  2. Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: A state-of-the-art review. Comput Aided Des 42(7):641–654. https://doi.org/10.1016/j.cad.2010.04.002

    Article  Google Scholar 

  3. Toh CK (2005) Design, evaluation and optimisation of cutter path strategies when high speed machining hardened mould and die materials. Mater Des 26(6):517–533. https://doi.org/10.1016/j.matdes.2004.07.019

    Article  Google Scholar 

  4. Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput Aided Des 36(13):1395–1417. https://doi.org/10.1016/j.cad.2004.02.009

    Article  MathSciNet  Google Scholar 

  5. Wojciechowski S, Maruda RW, Barrans S, Nieslony P, Krolczyk GM (2017) Optimisation of machining parameters during ball end milling of hardened steel with various surface inclinations. Measurement 111:18–28. https://doi.org/10.1016/j.measurement.2017.07.020

    Article  Google Scholar 

  6. Beňo J, Maňková I, Ižol P, Vrabel’ M (2016) An approach to the evaluation of multivariate data during ball end milling free-form surface fragments. Measurement 84:7-20. doi:https://doi.org/10.1016/j.measurement.2016.01.043

  7. Kurt M, Hartomacioglu S, Mutlu B, Köklü U (2012) Minimization of the surface roughness and form error on the milling of free-form surfaces using a grey relational analysis. Mater Technol 46(3):205–213

    Google Scholar 

  8. Yang L, Wu S, Liu X, Liu Z, Zhu M, Li Z (2018) The effect of characteristics of free-form surface on the machined surface topography in milling of panel mold. Int J Adv Manuf Technol 98(1):151–163. https://doi.org/10.1007/s00170-017-0698-y

    Article  Google Scholar 

  9. Layegh KSE, Lazoglu I (2017) 3D surface topography analysis in 5-axis ball-end milling. CIRP Ann Manuf Technol 66(1):133–136. https://doi.org/10.1016/j.cirp.2017.04.021

    Article  Google Scholar 

  10. Bouzakis KD, Aichouh P, Efstathiou K (2003) Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int J Mach Tools Manuf 43(5):499–514. https://doi.org/10.1016/S0890-6955(02)00265-1

    Article  Google Scholar 

  11. Ma J-w, Hu G-q, Z-y J, Zhang N, Wang F-j (2018) Effect of geometric feature and cutting direction on variation of force and vibration in high-speed milling of TC4 curved surface. Int J Adv Manuf Technol 95(5):2207–2218. https://doi.org/10.1007/s00170-017-1388-5

    Article  Google Scholar 

  12. Scandiffio I, Diniz AE, de Souza AF (2017) The influence of tool-surface contact on tool life and surface roughness when milling free-form geometries in hardened steel. Int J Adv Manuf Technol 92(1):615–626. https://doi.org/10.1007/s00170-017-0093-8

    Article  Google Scholar 

  13. Kurt M, Bagci E (2011) Feedrate optimisation/scheduling on sculptured surface machining: a comprehensive review, applications and future directions. Int J Adv Manuf Technol 55(9):1037–1067. https://doi.org/10.1007/s00170-010-3131-3

    Article  Google Scholar 

  14. de Souza AF, Berkenbrock E, Diniz AE, Rodrigues AR (2015) Influences of the tool path strategy on the machining force when milling free form geometries with a ball-end cutting tool. J Braz Soc Mech Sci Eng 37(2):675–687. https://doi.org/10.1007/s40430-014-0200-9

    Article  Google Scholar 

  15. de Oliveira EL, de Souza AF, Diniz AE (2018) Evaluating the influences of the cutting parameters on the surface roughness and form errors in 4-axis milling of thin-walled free-form parts of AISI H13 steel. J Braz Soc Mech Sci Eng 40(7):334. https://doi.org/10.1007/s40430-018-1250-1

    Article  Google Scholar 

  16. Scandiffio I, Diniz AE, de Souza AF (2016) Evaluating surface roughness, tool life, and machining force when milling free-form shapes on hardened AISI D6 steel. Int J Adv Manuf Technol 82(9):2075–2086. https://doi.org/10.1007/s00170-015-7525-0

    Article  Google Scholar 

  17. Yaka H, Demir H, Gok A, Akkus H (2018) Determination of optimum cutting parameters on free form surfaces in terms of form errors and machining times. Sigma J Eng Nat Sci 36(4):1153–1164

    Google Scholar 

  18. Khattree R, Naik DN (2002) Andrews plots for multivariate data: some new suggestions and applications. J Statist Plann Inf 100(2):411–425. https://doi.org/10.1016/S0378-3758(01)00150-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramos AM, Relvas C, Simões JA (2003) The influence of finishing milling strategies on texture, roughness and dimensional deviations on the machining of complex surfaces. J Mater Process Technol 136(1):209–216. https://doi.org/10.1016/S0924-0136(03)00160-2

    Article  Google Scholar 

  20. Shajari S, Sadeghi MH, Hassanpour H (2014) The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces. Sci World J 2014:14. https://doi.org/10.1155/2014/374526

    Article  Google Scholar 

  21. Vakondios D, Kyratsis P, Yaldiz S, Antoniadis A (2012) Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy Al7075-T6. Measurement 45(6):1480–1488. https://doi.org/10.1016/j.measurement.2012.03.001

    Article  Google Scholar 

  22. Baburaj M, Ghosh A, Shunmugam MS (2018) Development and experimental validation of a mechanistic model of cutting forces in micro-ball end milling of full slots. Mach Sci Technol 22(5):787–810. https://doi.org/10.1080/10910344.2017.1415932

    Article  Google Scholar 

  23. Li B (2012) A review of tool wear estimation using theoretical analysis and numerical simulation technologies. Int J Refract Met Hard Mater 35:143–151. https://doi.org/10.1016/j.ijrmhm.2012.05.006

    Article  Google Scholar 

  24. García-Osorio C, Fyfe C (2005) Visualization of high-dimensional data via orthogonal curves. J UCS 11:1806–1819. https://doi.org/10.3217/jucs-011-11-1806

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SERB, Department of Science and Technology (DST), New Delhi, that facilitated the experimental work at VNIT, Nagpur (grant: DST/ECR/2016/0001403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. K. Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, R.A., Aiswaresh, R. & Gupta, T.V.K. The influence of tool-path strategies and cutting parameters on cutting forces, tool wear and surface quality in finish milling of Aluminium 7075 curved surface. Int J Adv Manuf Technol 108, 589–601 (2020). https://doi.org/10.1007/s00170-020-05414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05414-7

Keywords

Navigation