Skip to main content

Advertisement

Log in

A review on in situ monitoring technology for directed energy deposition of metals

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Directed energy deposition (DED) is an important additive manufacturing method for producing or repairing high-end and high-value equipment. Meanwhile, the lack of reliable and uniform qualities is a key problem in DED applications. With the development of sensing devices and control systems, in situ monitoring (IM) and adaptive control (IMAC) technology is an effective method to enhance the reliability and repeatability of DED. In this paper, we review current IM technologies in IMAC for metal DED. First, this paper describes the important sensing signals and equipment to exhibit the research status in detail. Meanwhile, common problems that arise when gathering these signals and resolvent methods are presented. Second, process signatures obtained from sensing signals and transfer approaches from sensing signals for processing signatures are shown. Third, this work reviews the developments of the IM of product qualities and illustrates ways to realize quality monitoring. Lastly, this paper specifies the main existing problems and future research of IM in metal DED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ko H, Moon SK, Hwang J (2015) Design for additive manufacturing in customized products. Int J Precis Eng Manuf 16(11):2369–2375. https://doi.org/10.1007/s12541-015-0305-9

    Article  Google Scholar 

  2. Yao X, Moon SK, Bi G (2016) A cost-driven design methodology for additive manufactured variable platforms in product families. J Mech Des 138(4):041701. https://doi.org/10.1115/1.4032504

    Article  Google Scholar 

  3. Wohlers T, Caffrey T, Campbell RI, Diegel O, Kowen J (2019) Wohlers report 2019: 3D printing and additive manufacturing state of the industry. Wohlers Associates.

  4. ISO/ASTM 52900 Additive manufacturing — general principles — terminology (2017). ISO/TC 261; ASTM F42. Geneva.

  5. Standard guide for directed energy deposition of metals (2016). vol F3187-16. ASTM International, West Conshohocken, PA.

  6. Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81(1-4):465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  7. Wang X, Deng D, Hu Y, Ning F, Wang H, Cong W, Zhang H (2018) Overhang structure and accuracy in laser engineered net shaping of Fe-Cr steel. Opt Laser Technol 106:357–365. https://doi.org/10.1016/j.optlastec.2018.04.015

    Article  Google Scholar 

  8. Chen Z, Ye H, Xu H (2018) Distortion control in a wire-fed electron-beam thin-walled Ti-6Al-4 V freeform. J Mater Process Technol 258:286–295. https://doi.org/10.1016/j.jmatprotec.2018.04.008

    Article  Google Scholar 

  9. Mcandrew AR, Rosales MA, Colegrove PA, Hönnige JR, Ho A, Fayolle R, Eyitayo K, Stan I, Sukrongpang P, Crochemore A (2018) Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement. Addit Manuf 21:340–349. https://doi.org/10.1016/j.addma.2018.03.006

    Article  Google Scholar 

  10. Song L, Bagavath-Singh V, Dutta B, Mazumder J (2012) Control of melt pool temperature and deposition height during direct metal deposition process. Int J Adv Manuf Technol 58(1-4):247–256. https://doi.org/10.1007/s00170-011-3395-2

    Article  Google Scholar 

  11. Liu W-W, Tang Z-J, Liu X-Y, Wang H-J, Zhang H-C (2017) A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing. Procedia CIRP 61:235–240. https://doi.org/10.1016/j.procir.2016.11.217

    Article  Google Scholar 

  12. Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801. https://doi.org/10.1115/1.4028540

    Article  Google Scholar 

  13. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445. https://doi.org/10.1016/j.matdes.2016.01.099

    Article  Google Scholar 

  14. Chua ZY, Ahn IH, Moon SK (2017) Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int J Precis Eng Manuf Green Technol 4(2):235–245. https://doi.org/10.1007/s40684-017-0029-7

    Article  Google Scholar 

  15. Yan Z, Liu W, Tang Z, Liu X, Zhang N, Li M, Zhang H (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441. https://doi.org/10.1016/j.optlastec.2018.04.034

    Article  Google Scholar 

  16. Bandyopadhyay A, Traxel KD (2018) Invited review article: metal-additive manufacturing - modeling strategies for application-optimized designs. Addit Manuf 22:758–774. https://doi.org/10.1016/j.addma.2018.06.024

    Article  Google Scholar 

  17. He W, Shi W, Li J, Xie H (2019) In-situ monitoring and deformation characterization by optical techniques; part I: laser-aided direct metal deposition for additive manufacturing. Opt Laser Eng 122:74–88. https://doi.org/10.1016/j.optlaseng.2019.05.020

    Article  Google Scholar 

  18. Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  19. Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP (2016) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55(5):1400–1418. https://doi.org/10.1080/00207543.2016.1223378

    Article  Google Scholar 

  20. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5:16–40. https://doi.org/10.1186/s40192-016-0045-4

    Article  Google Scholar 

  21. Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):044005. https://doi.org/10.1088/1361-6501/aa5c4f

    Article  Google Scholar 

  22. Malekipour E, El-Mounayri H (2017) Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review. Int J Adv Manuf Technol 95(1-4):527–550. https://doi.org/10.1007/s00170-017-1172-6

    Article  Google Scholar 

  23. García-Díaz A, Panadeiro V, Lodeiro B, Rodríguez-Araújo J, Stavridis J, Papacharalampopoulos A, Stavropoulos P (2018) OpenLMD, an open source middleware and toolkit for laser-based additive manufacturing of large metal parts. Rob Comput Integr Manuf 53:153–161. https://doi.org/10.1016/j.rcim.2018.04.006

    Article  Google Scholar 

  24. Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R (2006) Identification and qualification of temperature signal for monitoring and control in laser cladding. Opt Laser Eng 44(12):1348–1359. https://doi.org/10.1016/j.optlaseng.2006.01.009

    Article  Google Scholar 

  25. Lei JB, Wang Z, Liu LF (2010) Design of forming shape measurement system for laser molten pool in laser fabricating. Appl Mec Mater 37:327–330. https://doi.org/10.4028/www.scientific.net/AMM.37-38.327

    Article  Google Scholar 

  26. Bi G, Schürmann B, Gasser A, Wissenbach K, Poprawe R (2007) Development and qualification of a novel laser-cladding head with integrated sensors. Int J Mach Tools Manuf 47(3-4):555–561. https://doi.org/10.1016/j.ijmachtools.2006.05.010

    Article  Google Scholar 

  27. Song L, Wang F, Li S, Han X (2017) Phase congruency melt pool edge extraction for laser additive manufacturing. J Mater Process Technol 250:261–269. https://doi.org/10.1016/j.jmatprotec.2017.07.013

    Article  Google Scholar 

  28. Rodriguez-Araujo J, Rodriguez-Andina JJ, Farina J, Vidal F, Mato JL, Montealegre MA (2012) Industrial laser cladding systems: FPGA-based adaptive control. IEEE Ind Electron Mag 6(4):35–46. https://doi.org/10.1109/mie.2012.2221356

    Article  Google Scholar 

  29. Ocylok S, Alexeev E, Mann S, Weisheit A, Wissenbach K, Kelbassa I (2014) Correlations of melt pool geometry and process parameters during laser metal deposition by coaxial process monitoring. Phys Procedia 56:228–238. https://doi.org/10.1016/j.phpro.2014.08.167

    Article  Google Scholar 

  30. Miyagi M, Tsukamoto T, Kawanaka H (2014) Adaptive shape control of laser-deposited metal structures by adjusting weld pool size. J Laser Appl 26(3):032003. https://doi.org/10.2351/1.4869499

    Article  Google Scholar 

  31. Hofman JT, Pathiraj B, van Dijk J, de Lange DF, Meijer J (2012) A camera based feedback control strategy for the laser cladding process. J Mater Process Technol 212(11):2455–2462. https://doi.org/10.1016/j.jmatprotec.2012.06.027

    Article  Google Scholar 

  32. Kriczky DA, Irwin J, Reutzel EW, Michaleris P, Nassar AR, Craig J (2015) 3D spatial reconstruction of thermal characteristics in directed energy deposition through optical thermal imaging. J Mater Process Technol 221:172–186. https://doi.org/10.1016/j.jmatprotec.2015.02.021

    Article  Google Scholar 

  33. Moralejo S, Penaranda X, Nieto S, Barrios A, Arrizubieta I, Tabernero I, Figueras J (2016) A feedforward controller for tuning laser cladding melt pool geometry in real time. Int J Adv Manuf Technol 89(1-4):821–831. https://doi.org/10.1007/s00170-016-9138-7

    Article  Google Scholar 

  34. Farahmand P, Kovacevic R (2014) An experimental–numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser. Opt Laser Technol 63:154–168. https://doi.org/10.1016/j.optlastec.2014.04.016

    Article  Google Scholar 

  35. Lei K, Qin X, Liu H, Ni M (2018) Analysis and modeling of melt pool morphology for high power diode laser cladding with a rectangle beam spot. Opt Laser Eng 110:89–99. https://doi.org/10.1016/j.optlaseng.2018.05.022

    Article  Google Scholar 

  36. Ding Y, Warton J, Kovacevic R (2016) Development of sensing and control system for robotized laser-based direct metal addition system. Addit Manuf 10:24–35. https://doi.org/10.1016/j.addma.2016.01.002

    Article  Google Scholar 

  37. Tang Z, Liu W, Yan Z, Wang H, Zhang HC (2019) Study on evolution behavior of geometrical accuracy based on dynamic characteristics of molten pool in laser-based direct energy deposition. J Mech Eng 55(15). https://doi.org/10.3901/jme.2019.15.039

  38. Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P, Carron D, Fabbro R (2013) Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4 V alloy. J Mater Process Technol 213(5):791–800. https://doi.org/10.1016/j.jmatprotec.2012.11.015

    Article  Google Scholar 

  39. Iravani-Tabrizipour M, Toyserkani E (2007) An image-based feature tracking algorithm for real-time measurement of clad height. Mach Vis Appl 18(6):343–354. https://doi.org/10.1007/s00138-006-0066-7

    Article  Google Scholar 

  40. Mozaffari A, Fathi A, Khajepour A, Toyserkani E (2013) Optimal design of laser solid freeform fabrication system and real-time prediction of melt pool geometry using intelligent evolutionary algorithms. Appl Soft Comput 13(3):1505–1519. https://doi.org/10.1016/j.asoc.2012.05.031

    Article  Google Scholar 

  41. Farshidianfar MH, Khajepour A, Zeinali M, Gelrich A (2013) System identification and height control of laser cladding using adaptive neuro-fuzzy inference systems. Int Congr Appl Laser Elect 2013:615–623. https://doi.org/10.2351/1.5062940

    Article  Google Scholar 

  42. Zeinali M, Khajepour A (2010) Height control in laser cladding using adaptive sliding mode technique: theory and experiment. J Manuf Sci Eng 132(4):041016. https://doi.org/10.1115/1.4002023

    Article  Google Scholar 

  43. Fathi A, Khajepour A, Durali M, Toyserkani E (2008) Geometry control of the deposited layer in a nonplanar laser cladding process using a variable structure controller. J Manuf Sci Eng 130(3):031003. https://doi.org/10.1115/1.2823085

    Article  Google Scholar 

  44. Fathi A, Khajepour A, Toyserkani E, Durali M (2007) Clad height control in laser solid freeform fabrication using a feedforward PID controller. Int J Adv Manuf Technol 35(3-4):280–292. https://doi.org/10.1007/s00170-006-0721-1

    Article  Google Scholar 

  45. Toyserkani E, Khajepour A (2006) A mechatronics approach to laser powder deposition process. Mechatronics 16(10):631–641. https://doi.org/10.1016/j.mechatronics.2006.05.002

    Article  Google Scholar 

  46. Asselin M, Toyserkani E, Iravani-Tabrizipour M, Khajepour A (2005) Development of trinocular CCD-based optical detector for real-time monitoring of laser cladding. IEEE ASME Int Conf Adv Intell Mechatron 3:1190–1196. https://doi.org/10.1109/ICMA.2005.1626722

    Article  Google Scholar 

  47. Hsu H-W, Lo Y-L, Lee M-H (2019) Vision-based inspection system for cladding height measurement in direct energy deposition (DED). Addit Manuf 27:372–378. https://doi.org/10.1016/j.addma.2019.03.017

    Article  Google Scholar 

  48. Peyre P, Dal M, Pouzet S, Castelnau O (2017) Simplified numerical model for the laser metal deposition additive manufacturing process. J Laser Appl 29(2). https://doi.org/10.2351/1.4983251

  49. Heralić A, Christiansson A-K, Ottosson M, Lennartson B (2010) Increased stability in laser metal wire deposition through feedback from optical measurements. Opt Laser Eng 48(4):478–485. https://doi.org/10.1016/j.optlaseng.2009.08.012

    Article  Google Scholar 

  50. Herali A, Christiansson AK, Hurtig K, Ottosson M, Lennartson B (2008) Control design for automation of robotized laser metal-wire deposition. IFAC Proceedings Volumes 41:14785–14791. https://doi.org/10.3182/20080706-5-kr-1001.2361

    Article  Google Scholar 

  51. Akbari M, Kovacevic R (2018) An investigation on mechanical and microstructural properties of 316 LSi parts fabricated by a robotized laser/wire direct metal deposition system. Addit Manuf 23:487–497. https://doi.org/10.1016/j.addma.2018.08.031

    Article  Google Scholar 

  52. Zhao Z, Guo Y, Bai L, Wang K, Han J (2019) Quality monitoring in wire-arc additive manufacturing based on cooperative awareness of spectrum and vision. Opt Int J Light Electron Opt 181:351–360. https://doi.org/10.1016/j.ijleo.2018.12.071

    Article  Google Scholar 

  53. Xiong J, Zhang G (2013) Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Meas Sci Technol 24(11):115103. https://doi.org/10.1088/0957-0233/24/11/115103

    Article  Google Scholar 

  54. Xiong J, Zhang G, Qiu Z, Li Y (2013) Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. J Cleaner Prod 41:82–88. https://doi.org/10.1016/j.jclepro.2012.10.009

    Article  Google Scholar 

  55. Xiong J, Yin Z, Zhang W (2016) Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. J Mater Process Technol 233:100–106. https://doi.org/10.1016/j.jmatprotec.2016.02.021

    Article  Google Scholar 

  56. Xiong J, Lei Y, Chen H, Zhang G (2017) Fabrication of inclined thin-walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition. J Mater Process Technol 240:397–403. https://doi.org/10.1016/j.jmatprotec.2016.10.019

    Article  Google Scholar 

  57. Li Y, Xiong J, Yin Z (2019) Molten pool stability of thin-wall parts in robotic GMA-based additive manufacturing with various position depositions. Rob Comput Integr Manuf 56:1–11. https://doi.org/10.1016/j.rcim.2018.08.002

    Article  Google Scholar 

  58. Xiong J, Pi Y, Chen H (2019) Deposition height detection and feature point extraction in robotic GTA-based additive manufacturing using passive vision sensing. Rob Comput Integr Manuf 59:326–334. https://doi.org/10.1016/j.rcim.2019.05.006

    Article  Google Scholar 

  59. Biegler M, Marko A, Graf B, Rethmeier M (2018) Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry. Addit Manuf 24:264–272. https://doi.org/10.1016/j.addma.2018.10.006

    Article  Google Scholar 

  60. Donadello S, Motta M, Demir AG, Previtali B (2018) Coaxial laser triangulation for height monitoring in laser metal deposition. Procedia CIRP 74:144–148. https://doi.org/10.1016/j.procir.2018.08.066

    Article  Google Scholar 

  61. Donadello S, Motta M, Demir AG, Previtali B (2019) Monitoring of laser metal deposition height by means of coaxial laser triangulation. Opt Laser Eng 112:136–144. https://doi.org/10.1016/j.optlaseng.2018.09.012

    Article  Google Scholar 

  62. Biegler M, Graf B, Rethmeier M (2018) Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up. Procedia CIRP 74:158–162. https://doi.org/10.1016/j.procir.2018.08.069

    Article  Google Scholar 

  63. Xie R, Zhao Y, Chen G, Lin X, Zhang S, Fan S, Shi Q (2018) The full-field strain distribution and the evolution behavior during additive manufacturing through in-situ observation. Mater Des 150:49–54. https://doi.org/10.1016/j.matdes.2018.04.039

    Article  Google Scholar 

  64. Xie R, Chen G, Zhao Y, Zhang S, Yan W, Lin X, Shi Q (2019) In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing. J Manuf Process 38:494–501. https://doi.org/10.1016/j.jmapro.2019.01.049

    Article  Google Scholar 

  65. Radel S, Diourte A, Soulié F, Company O, Bordreuil C (2019) Skeleton arc additive manufacturing with closed loop control. Addit Manuf 26:106–116. https://doi.org/10.1016/j.addma.2019.01.003

    Article  Google Scholar 

  66. Xiong J, Zhang G (2014) Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol 214(4):962–968. https://doi.org/10.1016/j.jmatprotec.2013.11.014

    Article  Google Scholar 

  67. Xiong J, Liu G, Pi Y (2019) Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Rob Comput Integr Manuf 59:385–393. https://doi.org/10.1016/j.rcim.2019.05.012

    Article  Google Scholar 

  68. Lu X, Lin X, Chiumenti M, Cervera M, Hu Y, Ji X, Ma L, Huang W (2019) In situ measurements and thermo-mechanical simulation of Ti–6Al–4 V laser solid forming processes. Int J Mech Sci 153:119–130. https://doi.org/10.1016/j.ijmecsci.2019.01.043

    Article  Google Scholar 

  69. Lei JB, Wang Z, Wang YS (2011) Measurement on temperature distribution of metal powder stream in laser fabricating. Appl Mec Mater 101-102:994–997. https://doi.org/10.4028/www.scientific.net/AMM.101-102.994

    Article  Google Scholar 

  70. Liu S, Farahmand P, Kovacevic R (2014) Optical monitoring of high power direct diode laser cladding. Opt Laser Technol 64:363–376. https://doi.org/10.1016/j.optlastec.2014.06.002

    Article  Google Scholar 

  71. Smurov I, Doubenskaia M, Zaitsev A (2013) Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation. Surf Coat Technol 220:112–121. https://doi.org/10.1016/j.surfcoat.2012.10.053

    Article  Google Scholar 

  72. Smurov I, Doubenskaia M, Grigoriev S, Nazarov A (2012) Optical monitoring in laser cladding of Ti6Al4V. J Therm Spray Technol 21(6):1357–1362. https://doi.org/10.1007/s11666-012-9808-4

    Article  Google Scholar 

  73. Doubenskaia M, Bertrand P, Smurov I (2004) Optical monitoring of Nd:YAG laser cladding. Thin Solid Films 453-454:477–485. https://doi.org/10.1016/j.tsf.2003.11.184

    Article  Google Scholar 

  74. Liu S, Zhang Y, Kovacevic R (2015) Numerical simulation and experimental study of powder flow distribution in high power direct diode laser cladding process. Lasers Manuf Mater Proce 2:199–218. https://doi.org/10.1007/s40516-015-0015-2

    Article  Google Scholar 

  75. Balu P, Leggett P, Kovacevic R (2012) Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process. J Mater Process Technol 212(7):1598–1610. https://doi.org/10.1016/j.jmatprotec.2012.02.020

    Article  Google Scholar 

  76. Wu J, Zhao P, Wei H, Lin Q, Zhang Y (2018) Development of powder distribution model of discontinuous coaxial powder stream in laser direct metal deposition. Powder Technol 340:449–458. https://doi.org/10.1016/j.powtec.2018.09.032

    Article  Google Scholar 

  77. Abe T, Sasahara H (2019) Layer geometry control for the fabrication of lattice structures by wire and arc additive manufacturing. Addit Manuf 28:639–648. https://doi.org/10.1016/j.addma.2019.06.010

    Article  Google Scholar 

  78. Zhan Q, Liang Y, Ding J, Williams S (2016) A wire deflection detection method based on image processing in wire + arc additive manufacturing. Int J Adv Manuf Technol 89(1-4):755–763. https://doi.org/10.1007/s00170-016-9106-2

    Article  Google Scholar 

  79. Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT, Essien M, Brooks J, Robino CV, Smugeresky JE (1999) Understanding thermal behavior in the LENS process. Mater Des 20(2–3):107–113. https://doi.org/10.1016/S0261-3069(99)00016-3

    Article  Google Scholar 

  80. Barua S, Liou F, Newkirk J, Sparks T (2014) Vision-based defect detection in laser metal deposition process. Rapid Prototyp J 20(1):77–85. https://doi.org/10.1108/RPJ-04-2012-0036

    Article  Google Scholar 

  81. Wang YS, Wang JJ, Lei JB, Yang XC (2008) Study on measurement of melting process of molten pool formed by laser scanning mirror. Key Eng Mater 392:141–145. https://doi.org/10.4028/www.scientific.net/KEM.392-394.141

    Article  Google Scholar 

  82. Wirth F, Arpagaus S, Wegener K (2018) Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation. Addit Manuf 21:369–382. https://doi.org/10.1016/j.addma.2018.03.025

    Article  Google Scholar 

  83. Stutzman CB, Nassar AR, Reutzel EW (2018) Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality. Addit Manuf 21:333–339. https://doi.org/10.1016/j.addma.2018.03.017

    Article  Google Scholar 

  84. Nassar AR, Starr B, Reutzel EW (2015) Process monitoring of directed-energy deposition of Inconel-718 via plume imaging. Paper presented at the Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug.

  85. Wu B, Ding D, Pan Z, Cuiuri D, Li H, Han J, Fei Z (2017) Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V. J Mater Process Technol 250:304–312. https://doi.org/10.1016/j.jmatprotec.2017.07.037

    Article  Google Scholar 

  86. Haley JC, Schoenung JM, Lavernia EJ (2018) Observations of particle-melt pool impact events in directed energy deposition. Addit Manuf 22:368–374. https://doi.org/10.1016/j.addma.2018.04.028

    Article  Google Scholar 

  87. Abe N, Tanigawa D, Tsukamoto M, Hayashi Y, Yamazaki H, Tatsumi Y, Yoneyama M (2013) Dynamic observation of formation process in laser cladding using high speed video camera. Paper presented at the International Congress on Applications of Lasers & Electro-Optics. https://doi.org/10.2351/1.5062915.

  88. Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P, Carron D, Fabbro R (2014) Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy. J Mater Process Technol 214(2):485–495. https://doi.org/10.1016/j.jmatprotec.2013.10.004

    Article  Google Scholar 

  89. Zhang B, Liu S, Shin YC (2019) In-process monitoring of porosity during laser additive manufacturing process. Addit Manuf 28:497–505. https://doi.org/10.1016/j.addma.2019.05.030

    Article  Google Scholar 

  90. Motta M, Demir AG, Previtali B (2018) High-speed imaging and process characterization of coaxial laser metal wire deposition. Addit Manuf 22:497–507. https://doi.org/10.1016/j.addma.2018.05.043

    Article  Google Scholar 

  91. Xu X, Ding J, Ganguly S, Diao C, Williams S (2018) Oxide accumulation effects on wire + arc layer-by-layer additive manufacture process. J Mater Process Technol 252:739–750. https://doi.org/10.1016/j.jmatprotec.2017.10.030

    Article  Google Scholar 

  92. Abe T, Mori D, Sonoya K, Nakamura M, Sasahara H (2019) Control of the chemical composition distribution in deposited metal by wire and arc-based additive manufacturing. Precis Eng 55:231–239. https://doi.org/10.1016/j.precisioneng.2018.09.010

    Article  Google Scholar 

  93. Xiong J, Zhang G, Zhang W (2015) Forming appearance analysis in multi-layer single-pass GMAW-based additive manufacturing. Int J Adv Manuf Technol 80(9-12):1767–1776 4DD

    Article  Google Scholar 

  94. Guo M, Jia C, Zhou J, Liu W, Wu C (2020) Investigating the generation process of molten droplets and arc plasma in the confined space during compulsively constricted WAAM. J Mater Process Technol:275. https://doi.org/10.1016/j.jmatprotec.2019.116355

  95. Jimi F, Kehong W, Dongqing Y, Yong H (2019) Gas flow status analysis in CMT+P additive manufacturing based on texture features of molten pool images. Opt Int J Light Electron Opt 179:385–394. https://doi.org/10.1016/j.ijleo.2018.10.179

    Article  Google Scholar 

  96. Liu R, Wang Z, Sparks T, Liou F, Nedic C (2017) Stereo vision-based repair of metallic components. Rapid Prototyp J 23(1):65–73. https://doi.org/10.1108/rpj-09-2015-0118

    Article  Google Scholar 

  97. Wang Z, Liu R, Sparks T, Liu H, Liou F (2015) Stereo vision based hybrid manufacturing process for precision metal parts. Precis Eng 42:1–5. https://doi.org/10.1016/j.precisioneng.2014.11.012

    Article  Google Scholar 

  98. Garmendia I, Pujana J, Lamikiz A, Madarieta M, Leunda J (2019) Structured light-based height control for laser metal deposition. J Manuf Process 42:20–27. https://doi.org/10.1016/j.jmapro.2019.04.018

    Article  Google Scholar 

  99. Garmendia I, Leunda J, Pujana J, Lamikiz A (2018) In-process height control during laser metal deposition based on structured light 3D scanning. Procedia CIRP 68:375–380. https://doi.org/10.1016/j.procir.2017.12.098

    Article  Google Scholar 

  100. Borish M, Post BK, Roschli A, Chesser PC, Love LJ, Gaul KT (2018) Defect identification and mitigation via visual inspection in large-scale additive manufacturing. JOM 71(3):893–899. https://doi.org/10.1007/s11837-018-3220-6

    Article  Google Scholar 

  101. Heralić A, Christiansson A-K, Lennartson B (2012) Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Laser Eng 50(9):1230–1241. https://doi.org/10.1016/j.optlaseng.2012.03.016

    Article  Google Scholar 

  102. Artaza T, Alberdi A, Murua M, Gorrotxategi J, Frías J, Puertas G, Melchor MA, Mugica D, Suárez A (2017) Design and integration of WAAM technology and in situ monitoring system in a gantry machine. Procedia Manuf 13:778–785. https://doi.org/10.1016/j.promfg.2017.09.184

    Article  Google Scholar 

  103. Doumanidis C, Skordeli E (2000) Distributed-parameter modeling for geometry control of manufacturing processes with material deposition. J Dyn Syst Meas Contr 122(1):71–77 4DD

    Article  Google Scholar 

  104. Kwak Y-M, Doumanidis CC (2002) Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding. J Manuf Process 4(1):28–41. https://doi.org/10.1016/s1526-6125(02)70131-x

    Article  Google Scholar 

  105. Doumanidis C, Kwak Y-M (2001) Geometry modeling and control by infrared and laser sensing in thermal manufacturing with material deposition. J Manuf Sci Eng 123(1):45–52. https://doi.org/10.1115/1.1344898

    Article  Google Scholar 

  106. Xu F, Dhokia V, Colegrove P, McAndrew A, Williams S, Henstridge A, Newman ST (2018) Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing Ti-6Al-4V parts. Int J Computer Integr Manuf 31(8):785–798. https://doi.org/10.1080/0951192x.2018.1466395

    Article  Google Scholar 

  107. Xiong J, Zhang G, Hu J, Wu L (2012) Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf 25(1):157–163. https://doi.org/10.1007/s10845-012-0682-1

    Article  Google Scholar 

  108. Xiong J, Zhang G, Hu J, Li Y (2013) Forecasting process parameters for GMAW-based rapid manufacturing using closed-loop iteration based on neural network. Int J Adv Manuf Technol 69(1-4):743–751. https://doi.org/10.1007/s00170-013-5038-2

    Article  Google Scholar 

  109. Han Q, Li D, Sun H, Zhang G (2019) Forming characteristics of additive manufacturing process by twin electrode gas tungsten arc. Int J Adv Manuf Technol:1–10. https://doi.org/10.1007/s00170-019-04314-9.

  110. Deng Q, Chen D, Fu W, Cao P (2014) Measurement of the molten pool image during laser cladding process. Paper presented at the International Conference on Mechatronics, Electronic, Industrial and Control Engineering. https://doi.org/10.2991/meic-14.2014.141.

  111. Hu D, Kovacevic R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf 43:51–60. https://doi.org/10.1016/S0890-6955(02)00163-3

    Article  Google Scholar 

  112. Lison M, Devesse W, de Baere D, Hinderdael M, Guillaume P (2019) Hyperspectral and thermal temperature estimation during laser cladding. J Laser Appl 31(2). https://doi.org/10.2351/1.5096129

  113. Hu D, Mei H, Tao G, Kovacevic R (2001) Closed loop control of 3D laser cladding based on infrared sensing. Paper presented at the Proceedings of the Solid Freeform Fabrication Symposium. https://doi.org/10.26153/tsw/3245.

  114. Liu Y, Wang L, Brandt M (2019) Model predictive control of laser metal deposition. Int J Adv Manuf Technol:1–13. https://doi.org/10.1007/s00170-019-04279-9

  115. Stockton GR, Zalameda JN, Burke ER, Hafley RA, Taminger KM, Domack CS, Brewer A, Martin RE, Colbert FP (2013) Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits. Paper presented at the Thermosense: Thermal Infrared Applications XXXV. https://doi.org/10.1117/12.2018233

  116. Zalameda JN, Bison P, Taminger KM, Domack CS, Zalameda JN, Taminger BL, Hafley RA, Burke ER (2016) In-process thermal imaging of the electron beam freeform fabrication process. Paper presented at the Thermosense: Thermal Infrared Applications XXXVIII. https://doi.org/10.1117/12.2222439.

  117. Hammell JJ, Ludvigson CJ, Langerman MA, Sears JW (2011) Thermal imaging of laser powder deposition for process diagnostics. Paper presented at the ASME 2011 International Mechanical Engineering Congress and Exposition. https://doi.org/10.1115/IMECE2011-63701.

  118. Liu Z, Li T, Ning F, Cong W, Kim H, Jiang Q, Zhang H (2019) Effects of deposition variables on molten pool temperature during laser engineered net shaping of Inconel 718 superalloy. Int J Adv Manuf Technol 102:969–976. https://doi.org/10.1007/s00170-018-03245-1

    Article  Google Scholar 

  119. Pavlov M, Novichenko D, Doubenskaia M (2011) Optical diagnostics of deposition of metal matrix composites by laser cladding. Phys Procedia 12:674–682. https://doi.org/10.1016/j.phpro.2011.03.084

    Article  Google Scholar 

  120. Doubenskaia M, Smurov I, Grigoriev S, Pavlov M, Tikhonova E (2012) Optical monitoring in elaboration of metal matrix composites by direct metal deposition. Phys Procedia 39:767–775. https://doi.org/10.1016/j.phpro.2012.10.099

    Article  Google Scholar 

  121. Doubenskaia M, Pavlov M, Grigoriev S, Smurov I (2013) Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf Coat Technol 220:244–247. https://doi.org/10.1016/j.surfcoat.2012.10.044

    Article  Google Scholar 

  122. Farahmand P, Kovacevic R (2015) Laser cladding assisted with an induction heater (LCAIH) of Ni–60%WC coating. J Mater Process Technol 222:244–258. https://doi.org/10.1016/j.jmatprotec.2015.02.026

    Article  Google Scholar 

  123. Yang D, Wang G, Zhang G (2016) A comparative study of GMAW- and DE-GMAW-based additive manufacturing techniques: thermal behavior of the deposition process for thin-walled parts. Int J Adv Manuf Technol 91(5-8):2175–2184. https://doi.org/10.1007/s00170-016-9898-0

    Article  Google Scholar 

  124. Yang D, Wang G, Zhang G (2017) Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography. J Mater Process Technol 244:215–224. https://doi.org/10.1016/j.jmatprotec.2017.01.024

    Article  Google Scholar 

  125. Ding XP, Li HM, Zhu JQ, Wang GY, Cao HZ, Zhang Q, Ma HL (2017) Application of infrared thermography for laser metal-wire additive manufacturing in vacuum. Infrared Phys Technol 81:166–169. https://doi.org/10.1016/j.infrared.2016.12.017

    Article  Google Scholar 

  126. Yan Z, Liu W, Tang Z, Liu X, Zhang N, Wang Z, Zhang H (2019) Effect of thermal characteristics on distortion in laser cladding of AISI 316L. J Manuf Process 44:309–318. https://doi.org/10.1016/j.jmapro.2019.06.011

    Article  Google Scholar 

  127. Farshidianfar MH, Khajepour A, Gerlich AP (2016) Effect of real-time cooling rate on microstructure in laser additive manufacturing. J Mater Process Technol 231:468–478. https://doi.org/10.1016/j.jmatprotec.2016.01.017

    Article  Google Scholar 

  128. Farshidianfar MH, Khajepour A, Gerlich A (2016) Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf Technol 82(5-8):1173–1186. https://doi.org/10.1007/s00170-015-7423-5

    Article  Google Scholar 

  129. Wolff SJ, Gan Z, Lin S, Bennett JL, Yan W, Hyatt G, Ehmann KF, Wagner GJ, Liu WK, Cao J (2019) Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Addit Manuf 27:540–551. https://doi.org/10.1016/j.addma.2019.03.019

    Article  Google Scholar 

  130. Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, Marufuzzaman M, Bian L (2018) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions 51(5):437–455. https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  131. Bennett JL, Wolff SJ, Hyatt G, Ehmann K, Cao J (2017) Thermal effect on clad dimension for laser deposited Inconel 718. J Manuf Process 28:550–557. https://doi.org/10.1016/j.jmapro.2017.04.024

    Article  Google Scholar 

  132. Bennett JL, Kafka OL, Liao H, Wolff SJ, Yu C, Cheng P, Cao J (2018) Cooling rate effect on tensile strength of laser deposited Inconel 718. Procedia Manuf 26:912–919. https://doi.org/10.1016/j.promfg.2018.07.118

    Article  Google Scholar 

  133. Froend M, Ventzke V, Kashaev N, Klusemann B, Enz J (2019) Thermal analysis of wire-based direct energy deposition of Al-Mg using different laser irradiances. Addit Manuf:29. https://doi.org/10.1016/j.addma.2019.100800

  134. Bai X, Zhang H, Wang G (2013) Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging. Int J Adv Manuf Technol 69(5-8):1087–1095. https://doi.org/10.1007/s00170-013-5102-y.

    Article  Google Scholar 

  135. Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R (2006) Investigation on the direct laser metallic powder deposition process via temperature measurement. Appl Surf Sci 253(3):1411–1416. https://doi.org/10.1016/j.apsusc.2006.02.025

    Article  Google Scholar 

  136. Bi G, Sun CN, Gasser A (2013) Study on influential factors for process monitoring and control in laser aided additive manufacturing. J Mater Process Technol 213(3):463–468. https://doi.org/10.1016/j.jmatprotec.2012.10.006

    Article  Google Scholar 

  137. Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R (2006) Characterization of the process control for the direct laser metallic powder deposition. Surf Coat Technol 201(6):2676–2683. https://doi.org/10.1016/j.surfcoat.2006.05.006

    Article  Google Scholar 

  138. De Baere D, Devesse W, De Pauw B, Smeesters L, Thienpont H, Guillaume P (2016) Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition process. J Laser Appl 28(2):022303. https://doi.org/10.2351/1.4943995

    Article  Google Scholar 

  139. Song L, Huang W, Han X, Mazumder J (2017) Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing. IEEE Trans Ind Electron 64(1):633–642. https://doi.org/10.1109/tie.2016.2608318

    Article  Google Scholar 

  140. Song L, Wang C, Mazumder J (2012) Identification of phase transformation using optical emission spectroscopy for direct metal deposition process. High Power Laser Mater Processing Laser Beam Delivery Diagnostics Applications 8239:82390G. https://doi.org/10.1117/12.908264

    Article  Google Scholar 

  141. Song L, Mazumder J (2012) Real time Cr measurement using optical emission spectroscopy during direct metal deposition process. IEEE Sens J 12(5):958–964. https://doi.org/10.1109/JSEN.2011.2162316

    Article  Google Scholar 

  142. Lednev VN, Tretyakov RS, Sdvizhenskii PA, Grishin MY, Asyutin RD, Pershin SM (2018) Laser induced breakdown spectroscopy for in-situ multielemental analysis during additive manufacturing process. J Phys: Conf Ser:1109. https://doi.org/10.1088/1742-6596/1109/1/012050

  143. Bartkowiak K (2010) Direct laser deposition process within spectrographic analysis in situ. Phys Procedia 5:623–629. https://doi.org/10.1016/j.phpro.2010.08.090

    Article  Google Scholar 

  144. Ya W, Konuk AR, Aarts R, Pathiraj B, Huis in’t Veld B (2015) Spectroscopic monitoring of metallic bonding in laser metal deposition. J Mater Process Technol 220:276–284. https://doi.org/10.1016/j.jmatprotec.2015.01.026.

    Article  Google Scholar 

  145. Lednev VN, Sdvizhenskii PA, Asyutin RD, Tretyakov RS, Grishin MY, Stavertiy AY, Pershin SM (2019) In situ multi-elemental analysis by laser induced breakdown spectroscopy in additive manufacturing. Addit Manuf 25:64–70. https://doi.org/10.1016/j.addma.2018.10.043

    Article  Google Scholar 

  146. Shin J, Mazumder J (2018) Composition monitoring using plasma diagnostics during direct metal deposition (DMD) process. Opt Laser Technol 106:40–46. https://doi.org/10.1016/j.optlastec.2018.03.020

    Article  Google Scholar 

  147. Kisielewicz A, Sikström F, Christiansson AK, Ancona A (2018) Spectroscopic monitoring of laser blown powder directed energy deposition of Alloy 718. Procedia Manuf 25:418–425. https://doi.org/10.1016/j.promfg.2018.06.112

    Article  Google Scholar 

  148. Di Lazzaro P, Pershin SM, Fedorov AN, Stavertiy AY, Asyutin RD, Grishin MY, Sdvizhenskii PA, Tretyakov RS, Lednev V (2019) Laser induced breakdown spectroscopy for in situ multielemental analysis during additive manufacturing process. Paper presented at the XXII International Symposium on High Power Laser Systems and Applications. https://doi.org/10.1117/12.2522074.

  149. Liu S, Liu W, Harooni M, Ma J, Kovacevic R (2014) Real-time monitoring of laser hot-wire cladding of Inconel 625. Opt Laser Technol 62:124–134. https://doi.org/10.1016/j.optlastec.2014.03.007

    Article  Google Scholar 

  150. Devesse W, De Baere D, Hinderdael M, Guillaume P (2017) Model-based temperature feedback control of laser cladding using high resolution hyperspectral imaging. IEEE/ASME Trans Mechatron 22:2714–2722 4DD

    Article  Google Scholar 

  151. Devesse W, De Baere D, Guillaume P (2017) High resolution temperature measurement of liquid stainless steel using hyperspectral imaging. Sensors 17(1):91. https://doi.org/10.3390/s17010091

    Article  Google Scholar 

  152. Devesse W, De Baere D, Hinderdael M, Guillaume P (2016) Hardware-in-the-loop control of additive manufacturing processes using temperature feedback. J Laser Appl 28(2):022302. https://doi.org/10.2351/1.4943911

    Article  Google Scholar 

  153. Devesse W, De Baere D, Hinderdael M, Guillaume P (2016) High resolution temperature estimation during laser cladding of stainless steel. Phys Procedia 83:1253–1260. https://doi.org/10.1016/j.phpro.2016.08.132

    Article  Google Scholar 

  154. Song L, Mazumder J (2011) Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol 19(6):1349–1356. https://doi.org/10.1109/TCST.2010.2093901

    Article  Google Scholar 

  155. Tan H, Chen J, Zhang F, Lin X, Huang W (2010) Estimation of laser solid forming process based on temperature measurement. Opt Laser Technol 42(1):47–54. https://doi.org/10.1016/j.optlastec.2009.04.016

    Article  Google Scholar 

  156. Hua T, Jing C, Xin L, Fengying Z, Weidong H (2008) Research on molten pool temperature in the process of laser rapid forming. J Mater Process Technol 198(1-3):454–462. https://doi.org/10.1016/j.jmatprotec.2007.06.090

    Article  Google Scholar 

  157. Sun S, Durandet Y, Brandt M (2007) Melt pool temperature and its effect on clad formation in pulsed Nd:yttrium-aluminum-garnet laser cladding of Stellite 6. J Laser Appl 19(1):32–40. https://doi.org/10.2351/1.2402524

    Article  Google Scholar 

  158. Salehi D, Brandt M (2005) Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process. Int J Adv Manuf Technol 29(3-4):273–278. https://doi.org/10.1007/s00170-005-2514-3

    Article  Google Scholar 

  159. Muvvala G, Patra Karmakar D, Nath AK (2017) Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer. J Alloys Compd 714:514–521. https://doi.org/10.1016/j.jallcom.2017.04.254

    Article  Google Scholar 

  160. Gopinath M, Patra Karmakar D, Nath AK (2017) Monitoring of molten pool thermal history and its significance in laser cladding process. Paper presented at the ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, Los Angeles, CA https://doi.org/10.1115/msec2017-2657.

  161. Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes—part II: layer-to-layer temperature control. J Manuf Sci Eng 132(1):011011. https://doi.org/10.1115/1.4000883

    Article  Google Scholar 

  162. Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes—part I: online temperature control. J Manuf Sci Eng 132(1):011010. https://doi.org/10.1115/1.4000882

    Article  Google Scholar 

  163. Tang L, Ruan J, Sparks TE, Landers RG, Liou F (2009) Layer-to-layer height control for laser metal deposition processes. Paper presented at the Conference on American Control Conference. IEEE Press. https://doi.org/10.1115/1.4003691.

  164. Wu B, Pan Z, Ding D, Cuiuri D, Li H (2018) Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit Manuf 23:151–160. https://doi.org/10.1016/j.addma.2018.08.004

    Article  Google Scholar 

  165. Wang F, Mao H, Zhang D, Zhao X, Yu S (2008) Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis. Appl Surf Sci 255(5):3267–3275. https://doi.org/10.1016/j.apsusc.2008.09.039

    Article  Google Scholar 

  166. Gaja H, Liou F (2016) Defects monitoring of laser metal deposition using acoustic emission sensor. Int J Adv Manuf Technol 90(1-4):561–574. https://doi.org/10.1007/s00170-016-9366-x

    Article  Google Scholar 

  167. Whiting J, Springer A, Sciammarella F (2018) Real-time acoustic emission monitoring of powder mass flow rate for directed energy deposition. Addit Manuf 23:312–318. https://doi.org/10.1016/j.addma.2018.08.015

    Article  Google Scholar 

  168. Koester LW, Taheri H, Bigelow TA, Bond LJ, Faierson EJ (2018) In-situ acoustic signature monitoring in additive manufacturing processes. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/1.5031503.

  169. Taheri H, Koester LW, Bigelow TA, Faierson EJ, Bond LJ (2019) In situ additive manufacturing process monitoring with an acoustic technique: clustering performance evaluation using K-means algorithm. J Manuf Sci Eng 141(4):041011. https://doi.org/10.1115/1.4042786

    Article  Google Scholar 

  170. Bond LJ, Koester LW, Taheri H, Niezrecki C, Meyendorf NG, Gath K (2019) NDE in-process for metal parts fabricated using powder based additive manufacturing. Paper presented at the Smart Structures and NDE for Energy Systems and Industry 4.0. https://doi.org/10.1117/12.2520611.

  171. Wolff SJ, Wu H, Parab N, Zhao C, Ehmann KF, Sun T, Cao J (2019) In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing. Sci Rep 9(1):962. https://doi.org/10.1038/s41598-018-36678-5

    Article  Google Scholar 

  172. Aucott L, Dong H, Mirihanage W, Atwood R, Kidess A, Gao S, Wen S, Marsden J, Feng S, Tong M, Connolley T, Drakopoulos M, Kleijn CR, Richardson IM, Browne DJ, Mathiesen RH, Atkinson HV (2018) Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nat Commun 9(1):5414. https://doi.org/10.1038/s41467-018-07900-9

    Article  Google Scholar 

  173. Hu YP, Chen CW, Mukherjee K (2000) Measurement of temperature distributions during laser cladding process. J Laser Appl 12(3):126–130. https://doi.org/10.2351/1.521921

    Article  Google Scholar 

  174. Segerstark A, Andersson J, Svensson L-E (2016) Evaluation of a temperature measurement method developed for laser metal deposition. Sci Technol Weld Joining 22(1):1–6. https://doi.org/10.1080/13621718.2016.1169363

    Article  Google Scholar 

  175. Ya W, Pathiraj B, Liu S (2016) 2D modelling of clad geometry and resulting thermal cycles during laser cladding. J Mater Process Technol 230:217–232. https://doi.org/10.1016/j.jmatprotec.2015.11.012

    Article  Google Scholar 

  176. Kumara C, Segerstark A, Hanning F, Dixit N, Joshi S, Moverare J, Nylén P (2019) Microstructure modelling of laser metal powder directed energy deposition of alloy 718. Addit Manuf 25:357–364. https://doi.org/10.1016/j.addma.2018.11.024

    Article  Google Scholar 

  177. Zhang J, Li W, Yan L, Liou F (2018) A two-dimensional simulation of grain structure growth within the substrate and the fusion zone during direct metal deposition. CR Mec 346(11):1072–1086. https://doi.org/10.1016/j.crme.2018.08.003

    Article  Google Scholar 

  178. Zhang Z, Kovacevic R (2019) A thermo-mechanical model for simulating the temperature and stress distribution during laser cladding process. Int J Adv Manuf Technol 102(1-4):457–472. https://doi.org/10.1007/s00170-018-3127-y

    Article  Google Scholar 

  179. Heigel JC, Michaleris P, Palmer TA (2015) In situ monitoring and characterization of distortion during laser cladding of Inconel®; 625. J Mater Process Technol 220:135–145. https://doi.org/10.1016/j.jmatprotec.2014.12.029

    Article  Google Scholar 

  180. Xiong J, Lei Y, Li R (2017) Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures. Appl Therm Eng 126:43–52. https://doi.org/10.1016/j.applthermaleng.2017.07.168

    Article  Google Scholar 

  181. Lei Y, Xiong J, Li R (2018) Effect of inter layer idle time on thermal behavior for multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. Int J Adv Manuf Technol 96:1355–1365. https://doi.org/10.1007/s00170-018-1699-1

    Article  Google Scholar 

  182. Xiong J, Li R, Lei Y, Chen H (2018) Heat propagation of circular thin-walled parts fabricated in additive manufacturing using gas metal arc welding. J Mater Process Technol 251:12–19. https://doi.org/10.1016/j.jmatprotec.2017.08.007

    Article  Google Scholar 

  183. Li R, Xiong J, Lei Y (2019) Investigation on thermal stress evolution induced by wire and arc additive manufacturing for circular thin-walled parts. J Manuf Process 40:59–67. https://doi.org/10.1016/j.jmapro.2019.03.006

    Article  Google Scholar 

  184. Denlinger ER, Heigel JC, Michaleris P, Palmer TA (2015) Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J Mater Process Technol 215:123–131. https://doi.org/10.1016/j.jmatprotec.2014.07.030

    Article  Google Scholar 

  185. Hagqvist P, Heralić A, Christiansson A-K, Lennartson B (2014) Resistance measurements for control of laser metal wire deposition. Opt Laser Eng 54:62–67. https://doi.org/10.1016/j.optlaseng.2013.10.010

    Article  Google Scholar 

  186. Hagqvist P, Heralić A, Christiansson A-K, Lennartson B (2015) Resistance based iterative learning control of additive manufacturing with wire. Mechatronics 31:116–123. https://doi.org/10.1016/j.mechatronics.2015.03.008

    Article  Google Scholar 

  187. Grasso M, Gallina F, Colosimo BM (2018) Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing. Procedia CIRP 75:103–107. https://doi.org/10.1016/j.procir.2018.04.045

    Article  Google Scholar 

  188. Thombansen U, Ungers M (2014) Illumination for process observation in laser material processing. Phys Procedia 56:1286–1296. https://doi.org/10.1016/j.phpro.2014.08.053

    Article  Google Scholar 

  189. Barua S, Sparks T, Liou F (2011) Development of low-cost imaging system for laser metal deposition processes. Rapid Prototyp J 17(3):203–210. https://doi.org/10.1108/13552541111124789

    Article  Google Scholar 

  190. Buhr M, Weber J, Wenzl JP, Möller M, Emmelmann C (2018) Influences of process conditions on stability of sensor controlled robot-based laser metal deposition. Procedia CIRP 74(149-153). https://doi.org/10.1016/j.procir.2018.08.067

  191. Boyer TH (2003) Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum. Am J Phys 71(9):866. https://doi.org/10.1119/1.1566782

    Article  Google Scholar 

  192. Shevchik SA, Kenel C, Leinenbach C, Wasmer K (2018) Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit Manuf 21:598–604. https://doi.org/10.1016/j.addma.2017.11.012

    Article  Google Scholar 

  193. Ye D, Hong GS, Zhang Y, Zhu K, Fuh JYH (2018) Defect detection in selective laser melting technology by acoustic signals with deep belief networks. Int J Adv Manuf Technol 96(5-8):2791–2801. https://doi.org/10.1007/s00170-018-1728-0

    Article  Google Scholar 

  194. Dryburgh P, Patel R, Pieris DM, Hirsch M, Li W, Sharples SD, Smith RJ, Clare AT, Clark M (2019) Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/1.5099708.

  195. Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84(5):1483–1495. https://doi.org/10.1007/s00170-015-7809-4

    Article  Google Scholar 

  196. Lu QY, Wong CH (2017) Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys Prototyp 13(2):39–48. https://doi.org/10.1080/17452759.2017.1351201

    Article  Google Scholar 

  197. Guo Q, Zhao C, Escano LI, Young Z, Xiong L, Fezzaa K, Everhart W, Brown B, Sun T, Chen L (2018) Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy X-ray imaging. Acta Mater 151:169–180. https://doi.org/10.1016/j.actamat.2018.03.036

    Article  Google Scholar 

  198. Guo Q, Zhao C, Qu M, Xiong L, Escano LI, Hojjatzadeh SMH, Parab ND, Fezzaa K, Everhart W, Sun T, Chen L (2019) In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process. Addit Manuf 28:600–609. https://doi.org/10.1016/j.addma.2019.04.021

    Article  Google Scholar 

  199. Richter B, Blanke N, Werner C, Parab ND, Sun T, Vollertsen F, Pfefferkorn FE (2019) High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy. CIRP Ann. https://doi.org/10.1016/j.cirp.2019.04.110

  200. Bobel A, Hector LG, Chelladurai I, Sachdev AK, Brown T, Poling WA, Kubic R, Gould B, Zhao C, Parab N, Greco A, Sun T (2019) In situ synchrotron X-ray imaging of 4140 steel laser powder bed fusion. Materialia. https://doi.org/10.1016/j.mtla.2019.100306

  201. Martin AA, Calta NP, Hammons JA, Khairallah SA, Nielsen MH, Shuttlesworth RM, Sinclair N, Matthews MJ, Jeffries JR, Willey TM, Lee JRI (2019) Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging. Mater Today Advan:1. https://doi.org/10.1016/j.mtadv.2019.01.001

  202. Leung CLA, Marussi S, Atwood RC, Towrie M, Withers PJ, Lee PD (2018) In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun 9(1):1355. https://doi.org/10.1038/s41467-018-03734-7

    Article  Google Scholar 

  203. Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7(1):3602. https://doi.org/10.1038/s41598-017-03761-2

    Article  Google Scholar 

  204. Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Rollett AD (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging. Science 363(6429):849–852. https://doi.org/10.1126/science.aav4687

    Article  Google Scholar 

  205. Parab ND, Zhao C, Cunningham R, Escano LI, Fezzaa K, Everhart W, Rollett AD, Chen L, Sun T (2018) Ultrafast X-ray imaging of laser-metal additive manufacturing processes. J Synchrotron Radiat 25(Pt 5):1467–1477. https://doi.org/10.1107/S1600577518009554

    Article  Google Scholar 

  206. Martin AA, Calta NP, Khairallah SA, Wang J, Depond PJ, Fong AY, Thampy V, Guss GM, Kiss AM, Stone KH, Tassone CJ, Nelson Weker J, Toney MF, van Buuren T, Matthews MJ (2019) Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat Commun 10(1):1987. https://doi.org/10.1038/s41467-019-10009-2

    Article  Google Scholar 

  207. Fathi A, Durall M, Toyserkani E, Khajepour A (2006) Control of the clad height in laser powder deposition process using a PID controller. Paper presented at the ASME 2006 International Mechanical Engineering Congress and Exposition. https://doi.org/10.1115/IMECE2006-13949.

  208. Farshidianfar MH, Khajepour A, Khosravani S, Gelrich A (2013) Clad height control in laser cladding using a nonlinear optimal output tracking controller. Int Congr Appl Laser Elect 2013:470–479. https://doi.org/10.2351/1.5062918

    Article  Google Scholar 

  209. Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Laser Eng 34(4-6):397–414. https://doi.org/10.1016/S0143-8166(00)00072-5

    Article  Google Scholar 

  210. Muvvala G, Patra Karmakar D, Nath AK (2018) In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating. J Alloys Compd 740:545–558. https://doi.org/10.1016/j.jallcom.2017.12.364

    Article  Google Scholar 

  211. Muvvala G, Patra Karmakar D, Nath AK (2017) Online assessment of TiC decomposition in laser cladding of metal matrix composite coating. Mater Des 121:310–320. https://doi.org/10.1016/j.matdes.2017.02.061

    Article  Google Scholar 

  212. Muvvala G, Patra Karmakar D, Nath AK (2017) Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy. Opt Laser Eng 88:139–152. https://doi.org/10.1016/j.optlaseng.2016.08.005

    Article  Google Scholar 

  213. Karnati S, Matta N, Sparks T (2013) Vision-based process monitoring for laser metal deposition processes. Paper presented at the Proceedings Solid Freeform Fabrication symposium.

  214. Muller M, Fabbro R, El-Rabii H, Hirano K (2012) Temperature measurement of laser heated metals in highly oxidizing environment using 2D single-band and spectral pyrometry. J Laser Appl 24(2). https://doi.org/10.2351/1.3701400

  215. Zhu L, Luo Y, Han J, Zhang C, Xu J, Chen D (2019) Energy characteristics of droplet transfer in wire-arc additive manufacturing based on the analysis of arc signals. Measurement 134:804–813. https://doi.org/10.1016/j.measurement.2018.10.048

    Article  Google Scholar 

  216. Huang Y, Ansari M, Asgari H, Farshidianfar MH, Sarker D, Khamesee MB, Toyserkani E (2019) Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). J Mater Process Technol 274. https://doi.org/10.1016/j.jmatprotec.2019.116286

  217. DePond PJ, Guss G, Ly S, Calta NP, Deane D, Khairallah S, Matthews MJ (2018) In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Mater Des 154:347–359. https://doi.org/10.1016/j.matdes.2018.05.050

    Article  Google Scholar 

  218. Arnold C, Pobel C, Osmanlic F, Körner C (2018) Layerwise monitoring of electron beam melting via backscatter electron detection. Rapid Prototyp J 24:1401–1406. https://doi.org/10.1108/RPJ-02-2018-0034

    Article  Google Scholar 

  219. You D, Gao X, Katayama S (2015) WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Trans Ind Electron 62(1):628–636. https://doi.org/10.1109/tie.2014.2319216

    Article  Google Scholar 

Download references

Funding

This work was supported by the Liaoning Provincial Natural Science Foundation of China (No. 20180520020), the Fundamental Research Funds for Central Universities (No. DUT20JC19), the Key Research and Development Plan of Ningxia (No. 2018BDE02045), the Talent Project of Revitalizing Liaoning (No. XLYC1802106), and Collaborative Innovation Center of Major Machine Manufacturing in Liaoning.

The Science and Technology Innovation Fund of Dalian (No.2020JJ26GX040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-wei Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Zj., Liu, Ww., Wang, Yw. et al. A review on in situ monitoring technology for directed energy deposition of metals. Int J Adv Manuf Technol 108, 3437–3463 (2020). https://doi.org/10.1007/s00170-020-05569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05569-3

Keywords

Navigation