Skip to main content
Log in

Recent development of improved clinching process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Clinching technology has been widely applied in automobile assembly industries to join sheet materials of different thicknesses and properties. It does not require any auxiliary parts and only depends on the plastic deformation of materials themselves to form a joint. Furthermore, clinching tools that include the punch and the die are simpler than other thermal joining methods. However, the usability of the clinched joint is restricted by a low joining strength. In order to expand the application range of clinching technologies, researchers have conducted extensive researches on how to improve clinching technologies. In this article, the latest advances of clinching technologies are reviewed on the development of clinching tools and processes. The improved clinching processes including flat clinching, hole clinching, reshaping the clinched joint without a rivet, reshaped joint with a rivet, rivet clinching, rectangular clinching, dieless clinching, roller clinching, laser shock clinching, hydro-clinching, injection clinching, adhesive clinching, resistance spot clinching, friction-assisted clinching, and laser-assisted clinching are introduced. The advantages and disadvantages of different clinching technologies are proposed. In addition, some suggestions for the future development of clinching technology are given in this paper. The clinching technology is developing towards a hybrid joining technology with high strength, high stability, and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.

Similar content being viewed by others

References

  1. He X, Pearson I, Young K (2008) Self-pierce riveting for sheet materials: state of the art. J Mater Process Technol 199(1-3):27–36

    Google Scholar 

  2. Jiang T, Liu Z-X, Wang P-C (2015) Quality inspection of clinched joints of steel and aluminum. Int J Adv Manuf Technol 76(5-8):1393–1402

    Google Scholar 

  3. K-I M, Bay N, Fratini L, Micari F, Tekkaya AE (2013) Joining by plastic deformation. CIRP Ann 62(2):673–694

    Google Scholar 

  4. Mucha J, Witkowski WJ (2014) The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions. Thin-Walled Struct 82:55–66

    Google Scholar 

  5. Lin J, Guo T, Su A, Niu Z Effects of process parameters on sheets warp of clinching based on abaqus. In: 2015 International Conference on Computer Science and Mechanical Automation (CSMA), 2015. IEEE, pp 308-312

  6. Zhao S, Xu F, Guo J, Han XJ (2014) Experimental and numerical research for the failure behavior of the clinched joint using modified Rousselier model. J Mater Process Technol 214(10):2134–2145

    Google Scholar 

  7. Fukumoto S, Lum I, Biro E, Boomer D, Zhou Y (2003) Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182. Weld J 82(11):307s

    Google Scholar 

  8. Hao M, Osman K, Boomer D, Newton CJ (1996) Developments in characterization of resistance spot welding of aluminum. Weld J 75(1):1–4

    Google Scholar 

  9. Hayat F (2012) Effect of aging treatment on the microstructure and mechanical properties of the similar and dissimilar 6061-T6/7075-T651 RSW joints. Mater Sci Eng A 556:834–843

    Google Scholar 

  10. Calabrese L, Galtieri G, Borsellino C, Di Bella G, Proverbio E (2016) Durability of hybrid clinch-bonded steel/aluminum joints in salt spray environment. Int J Adv Manuf Technol 87(9-12):3137–3147

    Google Scholar 

  11. Varis J (2006) Ensuring the intergity in clinching process. J Mater Process Tech 174 (1–3): 277–285

  12. Han X, Zhao S, Liu C, Chen C, Xu F (2017) Optimization of geometrical design of clinching tools in clinching process with extensible dies. J Mechanical Engineering Science 231 (21) :3889–3897

  13. Eshtayeh M, Hrairi M, Mohiuddin A (2016) Clinching process for joining dissimilar materials: state of the art. Int J Adv Manuf Technol 82(1-4):179–195

    Google Scholar 

  14. Lambiase F, Ko D-C (2016) Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets. Mater Des 107:341–352

    Google Scholar 

  15. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ (2016) Mechanical properties of the two-steps clinched joint with a clinch-rivet. J Mater Process Technol 237:361–370. https://doi.org/10.1016/j.jmatprotec.2016.06.024

    Article  Google Scholar 

  16. He XJS (2017) Clinching for sheet materials. Sci Technol Adv Mater 18(1):381–405

    Google Scholar 

  17. Lee C-J, Kim J-Y, Lee S-K, Ko D-C, Kim B-M (2010) Design of mechanical clinching tools for joining of aluminium alloy sheets. Mater Des 31(4):1854–1861

    Google Scholar 

  18. He X, Zhao L, Yang H, Xing B, Wang Y, Deng C, Gu F, Ball AJCMS (2014) Investigations of strength and energy absorption of clinched joints. 94:58-65

  19. He XC, Liu FL, Xing BY, Yang HY, Wang YQ, Gu FS, Ball A (2014) Numerical and experimental investigations of extensible die clinching. Int J Adv Manuf Technol 74(9-12):1229–1236. https://doi.org/10.1007/s00170-014-6078-y

    Article  Google Scholar 

  20. Chen C, Zhao SD, Cui MC, Han XL, Zhao XZ, Ishida T (2017) Effects of geometrical parameters on the strength and energy absorption of the height-reduced joint. Int J Adv Manuf Technol 90(9-12):3533–3541. https://doi.org/10.1007/s00170-016-9619-8

    Article  Google Scholar 

  21. Sabra Atia MK, Jain MK (2017) Die-less clinching process and joint strength of AA7075 aluminum joints. Thin-Walled Struct 120:421–431. https://doi.org/10.1016/j.tws.2017.06.021

    Article  Google Scholar 

  22. Sabra Atia MK, Jain MK (2018) A parametric study of FE modeling of die-less clinching of AA7075 aluminum sheets. Thin-Walled Struct 132:717–728. https://doi.org/10.1016/j.tws.2018.09.001

    Article  Google Scholar 

  23. YANG H, HE X, ZHOU S, ZENG K, DING Y (2013) Study on clinching for multi-layer metal sheet. 2013(24):10

  24. Lambiase F, Di Ilio A (2013) Finite element analysis of material flow in mechanical clinching with extensible dies. J Mater Eng Perform 22(6):1629–1636

    Google Scholar 

  25. Israel M, Mauermann R, Schellnock J (2013) Thick sheet clinching–joining up to 20 mm total thickness. Adv Ship Ocean Eng 2(1):1–10

    Google Scholar 

  26. Awiszus B Influence of the moisture content on flat-clinch connection of wood materials and aluminium. J Mater Process Tech 214(10):2069–2074

  27. Lambiase F (2015) Mechanical behaviour of polymer-metal hybrid joints produced by clinching using different tools. Mater Des 87:606 S0264127515302860

    Google Scholar 

  28. Neugebauer R, Dietrich S, Kraus C Joining by forming with a flat counter tool-a new way of joining magnesium components. In: Materials science forum, 2007. Trans Tech Publ, pp 3949-3954

  29. Neugebauer R, Dietrich S, Kraus C Dieless clinching and dieless rivet-clinching of magnesium. In: Key Engineering Materials, 2007. Trans Tech Publ, pp 693-698

  30. Neugebauer R, Kraus C, Dietrich S (2008) Advances in mechanical joining of magnesium. CIRP Ann Manuf Technol 57(1):283–286

    Google Scholar 

  31. He X, Zhang Y, Xing B, Gu F, Ball A (2015) Mechanical properties of extensible die clinched joints in titanium sheet materials. Mater Des 71:26–35

    Google Scholar 

  32. Xing B, He X, Wang Y, Yang H, Deng CJ (2015) Study of mechanical properties for copper alloy H62 sheets joined by self-piercing riveting and clinching. J Mater Process 216:28–36

    Google Scholar 

  33. Zhang Y, He XC, Liu FL Study on the property of clinched joint in similar-dissimilar sheets about titanium alloy. In: Applied Mechanics and Materials, 2015. Trans Tech Publ, pp 888-891

  34. Yang H, He X, Ding Y, Zhou S (2014) Study on clinched joint in similar and dissimilar sheets about copper alloy. (7):10

  35. Yang HY, He XC, Zeng K, Ding YF Numerical simulation of clinching process in copper alloy sheets. In: Advanced Materials Research, 2013. Trans Tech Publ, pp 439-442

  36. Grujicic M, Sellappan V, Arakere G, Ochterbeck J, Seyr N, Obieglo A, Erdmann M, Holzleitner J (2010) Investigation of a polymer metal inter-locking technology for use in load-bearing automotive components. Multidiscip Model Mater Struct 6(1):23–44

    Google Scholar 

  37. Grujicic M, Sellappan V, Arakere G, Seyr N, Obieglo A, Erdmann M, Holzleitner J (2009) The potential of a clinch-lock polymer metal hybrid technology for use in load-bearing automotive components. J Mater Eng Perform 18(7):893–902

    Google Scholar 

  38. Lambiase F (2015) Joinability of different thermoplastic polymers with aluminium AA6082 sheets by mechanical clinching. Inr J Adv Manuf Technol 80(9-12):1995–2006

    Google Scholar 

  39. Hörhold R, Müller M, Merklein M, Meschut G (2016) Mechanical properties of an innovative shear-clinching technology for ultra-high-strength steel and aluminium in lightweight car body structures. Weld World 60(3):613–620

    Google Scholar 

  40. Chen C, Zhang H, Xu Y, Wu J (2020) Investigation of the flat-clinching process for joining three-layer sheets on thin-walled structures. Thin Wall Struct 157:107034

  41. Beyer U, Awiszus B (2010) Flat-clinching-new possibility for joining different kinds of components in flexible and effective way to planar material compound. 81 (9):1124-1127

  42. Gerstmann T, Awiszus B (2014) Recent developments in flat-clinching. Comput Mater Sci 81:39–44. https://doi.org/10.1016/j.commatsci.2013.07.013

    Article  Google Scholar 

  43. Neugebauer R, Todtermuschke M, Mauermann R, Riedel F (2008) Overview on the state of development and the application potential of dieless mechanical joining processes. Arch Civ Mech Eng 8(4):51–60. https://doi.org/10.1016/S1644-9665(12)60121-6

    Article  Google Scholar 

  44. Chen C, Zhao S, Han X, Wang Y, Zhao X (2017) Investigation of flat clinching process combined with material forming technology for aluminum alloy. Materials (Basel) 10(12). https://doi.org/10.3390/ma10121433

  45. Chen C, Zhao S, Han X, Zhao X, Ishida T (2017) Experimental investigation on the joining of aluminum alloy sheets using improved clinching process. Materials (Basel) 10(8). https://doi.org/10.3390/ma10080887

  46. Lüder S, Härtel S, Binotsch C, Awiszus B (2014) Influence of the moisture content on flat-clinch connection of wood materials and aluminium. J Mater Process Technol 214(10):2069–2074

    Google Scholar 

  47. Härtel S, Graf M, Gerstmann T, Awiszus B (2017) Heat generation during mechanical joining processes – by the example of flat-clinching. Procedia Eng 184:251–265. https://doi.org/10.1016/j.proeng.2017.04.093

    Article  Google Scholar 

  48. Chen C, Zhao S, Cui M, Han X, Zhao X, Fan S (2017) Study on the flat-reshaping technology with no rivet for joining aluminum alloy sheet of the automobile. Chin J Mech Eng 53(18): 42–48. https://doi.org/10.3901/jme.2017.18.0421211

  49. He X (2011) Coefficient of variation and its application to strength prediction of clinched joints. J Comput Theor 4(4-5):1757–1760

    Google Scholar 

  50. Mayyas AT, Qattawi A, Mayyas AR, Omar MA (2012) Life cycle assessment-based selection for a sustainable lightweight body-in-white design. 39(1):412–425

  51. Messler RW (2000) Trends in key joining technologies for the twenty-first century. Assem Autom 20(2):118–128

    Google Scholar 

  52. Lee C-J, Lee S-H, Lee J-M, Kim B-H, Kim B-M, Ko D-C (2014) Design of hole-clinching process for joining CFRP and aluminum alloy sheet. Int J Precis Eng Manuf 15(6):1151–1157

    Google Scholar 

  53. Lee C-J, Lee J-M, Ryu H-Y, Lee K-H, Kim B-M, Ko D-C (2014) Design of hole-clinching process for joining of dissimilar materials – Al6061-T4 alloy with DP780 steel, hot-pressed 22MnB5 steel, and carbon fiber reinforced plastic. J Mater Process Technol 214(10):2169–2178. https://doi.org/10.1016/j.jmatprotec.2014.03.032

    Article  Google Scholar 

  54. Lee S-H, Lee C-J, Lee K-H, Lee J-M, Kim B-M, Ko D-C (2014) Influence of tool shape on hole clinching for carbon fiber-reinforced plastic and SPRC440. Adv Mech Eng 6:810864

    Google Scholar 

  55. Lee C-J, Kim B-M, Kang B-S, Song W-J, Ko D-C (2017) Improvement of joinability in a hole clinching process with aluminum alloy and carbon fiber reinforced plastic using a spring die. Compos Struct 173:58–69

    Google Scholar 

  56. Lee C-J, Shen G, Kim B-M, Lambiase F, Ko D-C (2018) Analysis of failure-mode dependent joint strength in hole clinching from the aspects of geometrical interlocking parameters. Metals-Basel 8(12):1020

    Google Scholar 

  57. Busse S, Merklein M, Roll K, Ruther M, Zürn M (2010) Development of a mechanical joining process for automotive body-in-white production. Int J Mater Form 3(S1):1059–1062. https://doi.org/10.1007/s12289-010-0953-3

    Article  Google Scholar 

  58. Wen T, Huang Q, Liu Q, Ou W-X, Zhang S (2015) Joining different metallic sheets without protrusion by flat hole clinching process. Int J Adv Manuf Technol 85(1-4):217–225. https://doi.org/10.1007/s00170-015-7936-y

    Article  Google Scholar 

  59. Gude M, Hufenbach W, Kupfer R, Freund A, Vogel C (2015) Development of novel form-locked joints for textile reinforced thermoplastices and metallic components. J Mater Process Technol 216:140–145

    Google Scholar 

  60. Wen T, Wang H, Yang C, Liu LT (2014) On a reshaping method of clinched joints to reduce the protrusion height. Int J Adv Manuf Technol 71(9-12):1709–1715. https://doi.org/10.1007/s00170-014-5612-2

    Article  Google Scholar 

  61. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ, Ishida T (2016) An experimental study on the compressing process for joining Al6061 sheets. Thin-Walled Struct 108:56–63. https://doi.org/10.1016/j.tws.2016.08.007

    Article  Google Scholar 

  62. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2016) Investigation of mechanical behavior of the reshaped joints realized with different reshaping forces. Thin-Walled Struct 107:266–273. https://doi.org/10.1016/j.tws.2016.06.020

    Article  Google Scholar 

  63. Chen C, Zhao SD, Han XL, Cui MC, Zhao XZ, Ishida T (2017) Experimental investigation of the mechanical reshaping process for joining aluminum alloy sheets with different thicknesses. J Manuf Process 26:105–112. https://doi.org/10.1016/j.jmapro.2017.01.015

    Article  Google Scholar 

  64. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2017) Investigation of the height-reducing method for clinched joint with AL5052 and AL6061. Int J Adv Manuf Technol 89(5-8):2269–2276. https://doi.org/10.1007/s00170-016-9266-0

    Article  Google Scholar 

  65. Lambiase F, Ko D-C (2017) Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets. Compos Struct 164:180–188

    Google Scholar 

  66. Chen C, Zhao SD, Cui MC, Han XL, Ben NY (2017) Numerical and experimental investigations of the reshaped joints with and without a rivet. Int J Adv Manuf Technol 88(5-8):2039–2051. https://doi.org/10.1007/s00170-016-8889-5

    Article  Google Scholar 

  67. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2016) Optimization of a reshaping rivet to reduce the protrusion height and increase the strength of clinched joints. J Mater Process Technol 234:1–9. https://doi.org/10.1016/j.jmatprotec.2016.03.006

    Article  Google Scholar 

  68. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ, Zhao XZ (2018) Comparative investigation of auxiliary processes for increasing the strength of clinched joints. P I Mech Eng E-J Pro 232(2):165–172. https://doi.org/10.1177/0954408916686998

    Article  Google Scholar 

  69. Kaščák Ľ, Spišák E, Mucha J (2013) Clinchrivet as an alternative method to resistance spot welding. Acta Mechanica et Automatica 7(2):79–82. https://doi.org/10.2478/ama-2013-0014

    Article  Google Scholar 

  70. Kah P, Suoranta R, Martikainen J, Magnus C (2014) Techniques for joining dissimilar materials: metals and polymers. Rev Adv Mater Sci 36(2)

  71. Lambiase F, Durante M, Ilio AD (2016) Fast joining of aluminum sheets with glass fiber reinforced polymer (GFRP) by mechanical clinching. J Mater Process Technol 236:241–251. https://doi.org/10.1016/j.jmatprotec.2016.04.030

    Article  Google Scholar 

  72. Ramarathnam G, Libertucci M, Sadowski M., North T (1992) Joining of polymers to metal. WELDING JOURNAL-NEW YORK, 71:483s.

  73. Rodríguez-Vidal E, Quintana I, Gadea C (2014) Laser transmission welding of ABS: effect of CNTs concentration and process parameters on material integrity and weld formation. Opt Laser Technol 57:194–201

    Google Scholar 

  74. Zhao L, He XC, Lu Y (2014) Research of mechanical behavior for rounded and rectangular clinched joint. Adv Mater Res 1035:144–148. https://doi.org/10.4028/www.scientific.net/AMR.1035.144

    Article  Google Scholar 

  75. Abe Y, Saito T, Nakagawa K, K-i M (2018) Rectangular shear clinching for joining of ultra-high strength steel sheets. Procedia Manuf 15:1354–1359

    Google Scholar 

  76. Abe Y, Kato T, Mori K Joining of aluminium alloy sheets by rectangular mechanical clinching. In: AIP Conference Proceedings, 2011. vol 1. American Institute of Physics, pp 1253-1258

  77. Neugebauer R, Mauermann R, Dietrich S, Kraus C (2007) A new technology for the joining by forming of magnesium alloys. Prod Eng 1(1):65–70. https://doi.org/10.1007/s11740-007-0045-5

    Article  Google Scholar 

  78. Atia MKS, Jain MK (2018) Finite element analysis of material flow in die-less clinching process and joint strength assessment. Thin-Walled Struct 127:500–515. https://doi.org/10.1016/j.tws.2018.03.001

    Article  Google Scholar 

  79. Eckold G, Maass H (1987) Vorrichtung zum nietartigen Verbinden von Blechen/Apparatus for the Rivet-Like Joining Together of Sheet Metals.

  80. Hiller M, Vitzthum S, Hacker M, Benkert T, Volk W Numerical analysis of the scalability of roller clinching processes. In: Key Engineering Materials, 2018. Trans Tech Publ, pp 377-385

  81. Hiller M, Volk W (2015) Joining aluminium alloy and mild steel sheets by roller clinching. Appl Mech Mater 794:295–303. https://doi.org/10.4028/www.scientific.net/AMM.794.295

    Article  Google Scholar 

  82. Hoffmann H, Schweitzer M, Milberg J. (1999) Rotary blanking. CIRP Annals 48(1): 213–216

  83. Rill D, Weiß M, Hoffmann H, Volk W (2014) Simulation assisted analysis of material flow in roller clinched joints. Adv Mater Res 966-967:628–640. https://doi.org/10.4028/www.scientific.net/AMR.966-967.628

    Article  Google Scholar 

  84. Vitzthum S, Hiller M, Volk W (2019) Experimental investigation of the scalability of roller-clinching processes with regard to joint strength and failure modeExperimentelle Untersuchung der Prozessskalierbarkeit beim Rotationsclinchen hinsichtlich Fugefestigkeit und Versagensart. Mater Werkst 50(8):1015–1026. https://doi.org/10.1002/mawe.201900022

    Article  Google Scholar 

  85. Weiss M, Volk W (2015) Influence of kinematics during roller clinching on joint properties. J Manuf Sci Eng 137(5). https://doi.org/10.1115/1.4030671

  86. Veenaas S, Vollertsen F (2015) Forming behavior during joining by laser induced shock waves. Key Eng Mater 651-653:1451–1456. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1451

    Article  Google Scholar 

  87. Wang X, Li C, Ma Y, Shen Z, Sun X, Sha C, Gao S, Li L, Liu H (2016) An experimental study on micro clinching of metal foils with cutting by laser shock forming. Materials (Basel) 9(7). https://doi.org/10.3390/ma9070571

  88. Wang X, Ji Z, Liu R, Zheng C (2018) Making interlock by laser shock forming. Opt Laser Technol 107:331–336. https://doi.org/10.1016/j.optlastec.2018.06.011

    Article  Google Scholar 

  89. Wang X, Ji Z, Wang J, You S, Zheng C, Liu R (2018) An experimental and numerical study on laser shock clinching for joining copper foil and perforated stainless steel sheet. J Mater Process Technol 258:155–164. https://doi.org/10.1016/j.jmatprotec.2018.03.025

    Article  Google Scholar 

  90. Wang X, Li X, Li C, Shen Z, Ma Y, Liu H (2018) Laser shock micro clinching of Al/Cu. J Mater Process Technol 258:200–210. https://doi.org/10.1016/j.jmatprotec.2018.04.005

    Article  Google Scholar 

  91. Babalo V, Fazli A, Soltanpour M (2018) Electro-hydraulic clinching: a novel high speed joining process. J Manuf Process 35:559–569

    Google Scholar 

  92. für Stahlanwendung S (2000) Eignung des Durchsetzfügens und des Stanznietens zum Fügen höherfester Stahlbleche. Düsseldorf,

  93. Neugebauer R, Mauermann R, Grützner R (2008) Hydrojoining. Int J Mater Form 1(1):1303–1306

    Google Scholar 

  94. Neugebauer R, Mauermann R, Grützner R (2005) Combination of hydroforming and joining. Steel Res Int 76(12):939–944

    Google Scholar 

  95. Amancio Filho SDT, Dos Santos JF, Beyer M (2010) Method and device for connecting a plastic workpiece to a further workpiece. Google Patents,

  96. Hahn O, Finkeldey C (2003) Ultrasonic riveting and hot-air-sticking of fiber-reinforced thermoplastics. 16(6):521–528

  97. Rotheiser J (2004) Staking/Swaging/Peening/Cold Heading/Cold Forming. Joining of Plastics: Handbook for Designers and Engineers, 428–434

  98. Yeh H, Schott C, Park J Experimental study on hot-air cold staking of PC, PC/ABS and acetal samples. In: Technical Papers of The Annual Technical Conferencesociety of Plastics Engineers Incorporated, 1998. Society of Plastics Engineers INC, pp 1078-1083

  99. Abibe AB, Amancio-Filho ST, Dos Santos JF, Hage E (2010) Development and analysis of a new joining method for polymer-metal hybrid structures. J Thermoplast Composite Mater 24(2):233–249. https://doi.org/10.1177/0892705710381469

    Article  Google Scholar 

  100. Abibe AB, Amancio-Filho ST, dos Santos JF, Hage E (2013) Mechanical and failure behaviour of hybrid polymer–metal staked joints. Mater Des 46:338–347. https://doi.org/10.1016/j.matdes.2012.10.043

  101. Abibe AB, Sônego M, dos Santos JF, Canto LB, Amancio-Filho ST (2016) On the feasibility of a friction-based staking joining method for polymer–metal hybrid structures. Mater Des 92:632–642. https://doi.org/10.1016/j.matdes.2015.12.087

    Article  Google Scholar 

  102. Balawender T, Sadowski T, Golewski P (2011) Experimental and numerical analyses of clinched and adhesively bonded hybrid joints. J Adhes Sci Technol 25 (18): 2391-2407

  103. He X (2011) A review of finite element analysis of adhesively bonded joints. Int J Adhes Adhes 31(4):248–264

    Google Scholar 

  104. Lee C-J, Lee J-M, Lee K-H, Kim D-H, Ryu H-Y, Kim B-M (2014) Development of hybrid clinched structure by using multi-cohesive zone models. Int J Precis Eng Manuf 15(6):1015–1022. https://doi.org/10.1007/s12541-014-0430-x

    Article  Google Scholar 

  105. Zheng R, Lin J, Wang P-C, Zhu C, Wu Y (2015) Effect of adhesive characteristics on static strength of adhesive-bonded aluminum alloys. Int J Adhes Adhes 57:85–94. https://doi.org/10.1016/j.ijadhadh.2014.10.007

    Article  Google Scholar 

  106. Balawender T, Sadowski T, Kneć M (2011) Technological problems and experimental investigation of hybrid: clinched-adhesively bonded joint. Arch Metall Mater 56(2):438–446

    Google Scholar 

  107. Balawender T, Sadowski T, Golewski P (2012) Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension. Comput Mater Sci 64:270–272. https://doi.org/10.1016/j.commatsci.2012.05.014

    Article  Google Scholar 

  108. Moroni F, Pirondi A, Kleiner F (2010) Experimental analysis and comparison of the strength of simple and hybrid structural joints. 30(5):367–379

  109. Landrock A, Ebnesajjad S (2009) Adhesive bonding: materials, applications and technology. Wiley-VCH,

  110. Geiss PL, Koetter MP, Presser M, Raudonat, D (2010). Hybrid joining with pressure sensitive adhesives. Pressure Sensitive Tape Council (PSTC) TECH, 33.

  111. Yang HY, He XC, Wang YQ Analytical model for strength of clinched joint in aluminium alloy sheet. In: Applied Mechanics and Materials, 2013. Trans Tech Publ, pp 578-581

  112. Li Y, Li D, David SA, Lim YC, Feng Z (2016) Microstructures of magnetically assisted dual-phase steel resistance spot welds. Sci Technol Weld Join 21(7):555–563

    Google Scholar 

  113. Li Y, Li D, Lin Z, David SA, Feng Z, Tang W (2016) Magnetically assisted resistance spot welding. Sci Technol Weld Join 21(1):59–74

    Google Scholar 

  114. Li Y, Li Y, Shen Q, Lin Z (2013) Magnetically assisted resistance spot welding of dual-phase steel. Weld J 92(4):124–132

    Google Scholar 

  115. Li Y, Zhang Y, Bi J, Luo Z (2015) Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding. Mater Des 83:577–586

    Google Scholar 

  116. Zhang Y, Luo Z, Li Y, Liu Z, Huang Z (2015) Microstructure characterization and tensile properties of Mg/Al dissimilar joints manufactured by thermo-compensated resistance spot welding with Zn interlayer. Mater Des 75:166–173

    Google Scholar 

  117. Zhang Y, Zhang X, Guo J, Manladan SM, Luo Z, Li Y (2019) Effects of local stiffness on the spot joints mechanical properties: comparative study between resistance spot welding and resistance spot clinching joints. J Manuf Process 39:93–101. https://doi.org/10.1016/j.jmapro.2019.02.018

    Article  Google Scholar 

  118. Lambiase F, Di Ilio A (2014) An experimental study on clinched joints realized with different dies. Thin-Walled Struct 85:71–80

    Google Scholar 

  119. Mori K, Abe Y, Kato T (2012) Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. J Mater Process Technol 212(9):1900–1905

    Google Scholar 

  120. Mori K, Abe Y, Kato T (2014) Self-pierce riveting of multiple steel and aluminium alloy sheets. J Mater Process Technol 214(10):2002–2008

    Google Scholar 

  121. Trommer G (2009) Resistance spot welding using continuous tape. Weld J 88:12

    Google Scholar 

  122. Zhang Y, Shan H, Li Y, Guo J, Luo Z, Ma CY (2017) Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process. Mater Des 118:36–43

    Google Scholar 

  123. Zhang Y, Li Y, Luo Z, Yuan T, Bi J, Wang ZM, Wang ZP, Chao Y (2016) Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding. Mater Des 106:235–246

    Google Scholar 

  124. Zhang Y, Shan H, Li Y, Zhao CF, Luo Z, Guo J, Ma CY (2017) Effects of the oxide film on the spot joining of aluminum alloy sheets: a comparative study between resistance spot welding and resistance spot clinching. Int J Adv Manuf Technol 92(9-12):4231–4240

    Google Scholar 

  125. Lambiase F, Paoletti A, Di Ilio A (2017) Advances in mechanical clinching: employment of a rotating tool. Procedia Eng 183:200–205

    Google Scholar 

  126. Reich M, Osten J, Milkereit B, Kalich J, Füssel U, Kessler O (2014) Short-time heat treatment of press hardened steel for laser assisted clinching. Mater Sci Technol 30(11):1287–1296

    Google Scholar 

  127. Osten J, Söllig P, Reich M, Kalich J, Füssel U, Kessler O Softening of high-strength steel for laser assisted clinching. In: Advanced Materials Research, 2014. Trans Tech Publ, pp 617-627

  128. Abe Y, Kishimoto M, Kato T, Mori K (2009) Joining of hot-dip coated steel sheets by mechanical clinching. Int J Mater Form 2(1):291

    Google Scholar 

  129. He X (2010) Recent development in finite element analysis of clinched joints. Int J Adv Manuf Technol 48(5-8):607–612

    Google Scholar 

  130. Saberi S, Enzinger N, Vallant R, Cerjak H, Hinterdorfer J, Rauch R (2008) Influence of plastic anisotropy on the mechanical behavior of clinched joint of different coated thin steel sheets. Int J Mater Form 1(1):273–276

    Google Scholar 

  131. Wang PC (2014) Quality inspection of clinched joints of steel and aluminum. Int J Adv Manuf Technol 76(5-8):1393–1402

    Google Scholar 

Download references

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), Young Elite Scientists Sponsorship Program by CAST, Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716), Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2019JQ-372), Research Fund of State Key Laboratory of High Performance Complex Manufacturing (Grant No. ZZYJKT2019-01), and Huxiang High-Level Talent Gathering Project of HUNAN Province (Grant No. 2019RS1002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Chen, C., Zhang, H. et al. Recent development of improved clinching process. Int J Adv Manuf Technol 110, 3169–3199 (2020). https://doi.org/10.1007/s00170-020-05978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05978-4

Keywords

Navigation