Skip to main content
Log in

Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study investigates the mechanical properties of the wire + arc additively manufactured Inconel 625 thin wall. The first part of this study focused on the microstructural features of the material after time-based annealing. This second part discusses the tensile strength and microhardness of the material after the same annealing procedure (980 °C, hold time 30 min, 1 h, and 2 h). It is found that the annealing procedure improved the ultimate tensile strength by 5%. Although the yield strength remains unchanged up to 1-h of annealing, it increases after 2-h of heat treatment. The presence of strengthening elements and precipitation of secondary phases seem to control the tensile strength of the additively manufactured Inconel 625. On the other hand, the average microhardness does not show any significant trend for time-based heat treatment. However, the layer-specific variation of microhardness was observed in the sample, which may have caused high standard deviation in the as-deposited sample. Overall, the annealing procedure with a 2-h hold time presents the best mechanical properties of the Inconel 625 so far. Nevertheless, further improvement in strength and hardness may require a comprehensive study with location-specific microstructure and mechanical properties analysis before and after the heat treatment procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li S, Wei Q, Shi Y, Zhu Z, Zhang D (2015) Microstructure characteristics of Inconel 625 Superalloy manufactured by selective laser melting. J Mater Sci Technol 31(9):946–952. https://doi.org/10.1016/j.jmst.2014.09.020

    Article  Google Scholar 

  2. Yeni C, Koçak M (2008) Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure. Int J Press Vessel Pip 85(8):532–539. https://doi.org/10.1016/j.ijpvp.2008.02.004

    Article  Google Scholar 

  3. ASTM International (2014a) F3055-14a standard specification for additive manufacturing nickel alloy (UNS N07718) with powder bed fusion. In ASTM Standard ASTM International https://doi.org/10.1520/F3055-14A

  4. ASTM International (2014b) F3056-14e1 standard specification for additive manufacturing nickel alloy ( UNS N06625 ) with (Issue 2014). ASTM International https://doi.org/10.1520/F3056-14E01

  5. Sciaky Inc (n.d.) Benefits of wire vs. powder metal 3D printing. Retrieved September 24, 2019, from https://www.sciaky.com/additive-manufacturing/wire-vs-powder Accessed 24 Sept 2019

  6. Shipley H, McDonnell D, Culleton M, Coull R, Lupoi R, O’Donnell G, Trimble D (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int J Mach Tools Manuf 128:1–20. https://doi.org/10.1016/J.IJMACHTOOLS.2018.01.003

    Article  Google Scholar 

  7. Koike R, Takemura S, Kakinuma Y, Kondo M (2018) Enhancement of powder supply efficiency in directed energy deposition based on gas-solid multiphase-flow simulation. Procedia CIRP 78:133–137. https://doi.org/10.1016/j.procir.2018.09.061

    Article  Google Scholar 

  8. Ahsan MRU, Kim T, Kim, Bong D, Ji C, Park Y-D (2018) A study on the effect of wire composition on welding with gap and offset in cold metal transfer (CMT) GMAW. J Weld Join 36:12–18. https://doi.org/10.5781/jwj.2018.36.5.2

    Article  Google Scholar 

  9. Ahsan MRU, Cheepu M, Ashiri R, Kim TH, Jeong C, Park YD (2017) Mechanisms of weld pool flow and slag formation location in cold metal transfer (CMT) gas metal arc welding (GMAW). Weld World 61:1275–1285. https://doi.org/10.1007/s40194-017-0489-y

    Article  Google Scholar 

  10. Dutra JC, Gonçalves de Silva RH, Marques C (2015) Melting and welding power characteristics of MIG–CMT versus conventional MIG for aluminium 5183. Weld Int 29:181–186. https://doi.org/10.1080/09507116.2014.932974

    Article  Google Scholar 

  11. Selvi S, Vishvaksenan A, & Rajasekar E (2018) Cold metal transfer (CMT) technology - an overview. In Defence Technology (Vol. 14, issue 1, pp. 28–44). Elsevier ltd. https://doi.org/10.1016/j.dt.2017.08.002

  12. Cardozo EP, Ríos S, Ganguly S, D’Oliveira ASCM (2018) Assessment of the effect of different forms of Inconel 625 alloy feedstock in plasma transferred arc (PTA) additive manufacturing. Int J Adv Manuf Technol 98(5–8):1695–1705. https://doi.org/10.1007/s00170-018-2340-z

    Article  Google Scholar 

  13. Feng Y, Liu J, Wang S, Sun Q, Xu P, Liu Y (2018) Effect of solution treatment on the microstructure of Inconel 625 alloy fabricated by arc additive manufacturing. Trans China Weld Inst 39(6):81–85. https://doi.org/10.12073/j.hjxb.2018390154

    Article  Google Scholar 

  14. Wang JF, Sun QJ, Wang H, Liu JP, Feng JC (2016) Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater Sci Eng A 676(October 2017):395–405. https://doi.org/10.1016/j.msea.2016.09.015

    Article  Google Scholar 

  15. Xu FJ, Lv YH, Xu BS, Liu YX, Shu FY, He P (2013a) Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition. Mater Des 45:446–455. https://doi.org/10.1016/j.matdes.2012.07.013

    Article  Google Scholar 

  16. Xu F, Lv Y, Liu Y, Shu F, He P, Xu B (2013b) Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. J Mater Sci Technol 29(5):480–488. https://doi.org/10.1016/j.jmst.2013.02.010

    Article  Google Scholar 

  17. Xu F, Lv Y, Liu Y, Xu B, He P (2013c) Effect of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by pulsed plasma arc deposition. Phys Procedia 50:48–54. https://doi.org/10.1016/j.phpro.2013.11.010

    Article  Google Scholar 

  18. Yangfan W, Xizhang C, Chuanchu S (2019) Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf Coat Technol 374:116–123. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  Google Scholar 

  19. Tanvir ANM, Ahsan MRU, Ji C, Hawkins W, Bates B, Kim DB (2019) Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)—part 1: microstructural characterization. Int J Adv Manuf Technol 103(9–12):3785–3798. https://doi.org/10.1007/s00170-019-03828-6

    Article  Google Scholar 

  20. Lippold JC, Dupont JN, Kiser SD (2009) Welding metallurgy and weldability of nickel-base alloys. J Chem Inf Model 53(9):456. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  21. Lippold JC (2015) Welding metallurgy and weldability. In: Welding Metallurgy and Weldability. Wiley. https://doi.org/10.1002/9781118960332

  22. Floreen S, Fuchs GE, & Yang WJ (1994) The metallurgy of alloy 625. Superalloys 718, 625, 706 and Various Derivatives (1994), 13–37. https://doi.org/10.7449/1994/Superalloys_1994_13_37

  23. Radavich JF, & Fort A (1994) Effects of long time exposure in alloy 625 at 1200°F, 1400°F and 1600°F. Superalloys 718,625 and Various Derivatives, 635–647

  24. Lass EA, Stoudt MR, Williams ME, Katz MB, Levine LE, Phan TQ, Gnaeupel-Herold TH, Ng DS (2017) Formation of the Ni3Nb δ-phase in stress-relieved Inconel 625 produced via laser powder-bed fusion additive manufacturing. Metall Mater Trans A 48:5547–5558. https://doi.org/10.1007/s11661-017-4304-6

    Article  Google Scholar 

  25. Liu D, Zhang X, Qin X, Ding Y (2017) High-temperature mechanical properties of Inconel-625: role of carbides and delta phase. Mater Sci Technol (United Kingdom) 33(14):1610–1617. https://doi.org/10.1080/02670836.2017.1300365

    Article  Google Scholar 

  26. Cieslak MJ, Headley TJ, Romig AD, Kollie T (1988) A melting and solidification study of alloy 625. Metall Trans A 19(9):2319–2331. https://doi.org/10.1007/BF02645056

    Article  Google Scholar 

  27. DuPont JN (1996) Solidification of an alloy 625 weld overlay. Metall Mater Trans A 27(11):3612–3620. https://doi.org/10.1007/BF02595452

    Article  Google Scholar 

  28. Silva CC, De Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ (2013) New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol 2(3):228–237. https://doi.org/10.1016/j.jmrt.2013.02.008

    Article  Google Scholar 

  29. Chang K-M, Lai H-J, & Hwang J-Y (1994) Existence of Laves phase in Nb-hardened superalloys. Superalloys 718, 625, 706 and Various Derivatives (1994). https://doi.org/10.7449/1994/Superalloys_1994_683_694

  30. Chandler H (1996b) Heat treater’s guide: practices and procedures for nonferrous alloys. In ASM International

  31. Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288(2-3):222–232. https://doi.org/10.1016/S0022-3115(00)00723-6

    Article  Google Scholar 

  32. Mu Y, Wang C, Zhou W, Zhou L (2018) Effect of Nb on δ phase precipitation and the tensile properties in cast alloy IN625. Metals 8(2):86. https://doi.org/10.3390/met8020086

    Article  Google Scholar 

  33. Marchese G, Lorusso M, Parizia S, Bassini E, Lee JW, Calignano F, Manfredi D, Terner M, Hong HU, Ugues D, Lombardi M, Biamino S (2018) Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater Sci Eng A 729:64–75. https://doi.org/10.1016/j.msea.2018.05.044

    Article  Google Scholar 

  34. Chandler H (1996a) ASM handbook: heat Treater’s guide-practices and procedures for nonferrous alloys. In ASM International

  35. Fang XY, Li HQ, Wang M, Li C, Guo YB (2018) Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy. Mater Charact 143:182–190. https://doi.org/10.1016/j.matchar.2018.02.008

    Article  Google Scholar 

  36. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509:98–104. https://doi.org/10.1016/j.msea.2009.01.009

    Article  Google Scholar 

  37. Tanvir ANM (2020) Wire + arc additive manufacturing of high-performance alloys. Tennessee Technological University

  38. Das A, Das SK, Tarafder S (2009) Correlation of fractographic features with mechanical properties in systematically varied microstructures of Cu-strengthened high-strength low-alloy steel. Metall Mater Trans A 40:3138–3146. https://doi.org/10.1007/s11661-009-9999-6

    Article  Google Scholar 

  39. Manikandan SGK, Sivakumar D, Kamaraj M, Rao KP (2012) Laves phase control in Inconel 718 weldments. Mater Sci Forum 710:614–619. https://doi.org/10.4028/www.scientific.net/MSF.710.614

    Article  Google Scholar 

  40. Dislocations and Strengthening Mechanisms (n.d.) Retrieved April 11, 2019, from https://www2.virginia.edu/bohr/mse209/chapter7.htm Accessed 24 Sept 2019

  41. Zhang D, Niu W, Cao X, Liu Z (2015) Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater Sci Eng A 644:32–40. https://doi.org/10.1016/j.msea.2015.06.021

    Article  Google Scholar 

  42. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46(1):151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  43. Paul CP, Ganesh P, Mishra SK, Bhargava P, Negi J, Nath AK (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39(4):800–805. https://doi.org/10.1016/j.optlastec.2006.01.008

    Article  Google Scholar 

  44. Rombouts M, Maes G, Mertens M, Hendrix W (2012) Laser metal deposition of Inconel 625: microstructure and mechanical properties. J Laser Appl 24(5):052007. https://doi.org/10.2351/1.4757717

    Article  Google Scholar 

  45. Rivera OG, Allison PG, Jordon JB, Rodriguez OL, Brewer LN, McClelland Z, Whittington WR, Francis D, Su J, Martens RL, Hardwick N (2017) Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater Sci Eng A 694(March):1–9. https://doi.org/10.1016/j.msea.2017.03.105

    Article  Google Scholar 

  46. Nicholas J, & Abson D (2008) The prediction of maximum HAZ hardness in various regions of multiple pass welds. https://www.twi-global.com/technical-knowledge/published-papers/the-prediction-of-maximum-haz-hardness-in-various-regions-of-multiple-pass-welds-june-2008#ref11 Accessed 29 Sept 2019

  47. Tanvir ANM, Ahsan MRU, Seo G, Bates B, Lee C, Liaw PK, Noakes M, Nycz A, Ji C, Kim DB (2020) Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.04.085

Download references

Funding

The authors of this paper appreciate the continuous support provided by the Center for Manufacturing Research (CMR) and the Department of Manufacturing and Engineering Technology at Tennessee Technological University. This study has been conducted with the support of the Korea Institute of Industrial Technology as a project on the development of metal 3D printing materials and process optimization technology for medium- and large-sized transportation part mold manufacturing (KITECH JE200008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duck Bong Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanvir, A.N.M., Ahsan, M.R.U., Seo, G. et al. Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties. Int J Adv Manuf Technol 110, 1709–1721 (2020). https://doi.org/10.1007/s00170-020-05980-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05980-w

Keywords

Navigation