Skip to main content
Log in

Effects of cutting parameters on roughness and residual stress of maraging steel specimens produced by additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive Manufacturing of metallic parts by powder bed fusion (PBF) has great potential to build complex geometries with innovative materials in a broad field of applications; however, it also presents some limitations as residual stresses, porosities, microcracks, and high roughness that restrict your plateau of productivity. Therefore, an alternative to improve the surface condition of PBF parts is the post-processing as milling. Maraging steel 300 is an important material used in the PBF process, considering its application in different segments, like automotive, tooling, and aerospace. Although there are a few works that investigated the effects of cutting parameters on the surface condition of maraging steel 300 components produced by PBF, this work investigated the effects of different cutting speeds (vc) and feed per tooth (fz) on average roughness Ra and residual stress of maraging 300 specimens. The lowest roughness level of Ra = 0.31 μm was obtained with fz = 0.02 mm/tooth and vc = 250 m/min. Furthermore, the cutting speed had a relevant effect on the compressive behavior of residual stresses. The feed per tooth combined with the cutting speed improved the surface roughness and the compressive residual stress of the specimens, showing the importance of considering both these parameters in the milling process planning of PBF maraging steel parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ASTM International, 52921:2019 - Standard terminology for additive manufacturing - coordinate systems and test (2019) 1–13. https://doi.org/10.1520/F2921

  2. Lou S, Jiang X, Sun W, Zeng W, Pagani L, Scott PJ (2019) Characterisation methods for powder bed fusion processed surface topography. Precis Eng 57:1–15. https://doi.org/10.1016/j.precisioneng.2018.09.007

    Article  Google Scholar 

  3. Kamath C (2016) Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol 86:1659–1677. https://doi.org/10.1007/s00170-015-8289-2

    Article  Google Scholar 

  4. Becker TH, Dimitrov D (2016) The achievable mechanical properties of SLM produced Maraging Steel 300 components. Rapid Prototyp J 22:487–494. https://doi.org/10.1108/RPJ-08-2014-0096

    Article  Google Scholar 

  5. Jägle EA, Choi PP, Van Humbeeck J, Raabe D (2014) Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res 29:2072–2079. https://doi.org/10.1557/jmr.2014.204

    Article  Google Scholar 

  6. Casalino G, Campanelli SL, Contuzzi N, Ludovico AD (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol 65:151–158. https://doi.org/10.1016/j.optlastec.2014.07.021

    Article  Google Scholar 

  7. Fortunato A, Lulaj A, Melkote S, Liverani E, Ascari A, Umbrello D (2018) Milling of maraging steel components produced by selective laser melting. Int J Adv Manuf Technol 94:1895–1902. https://doi.org/10.1007/s00170-017-0922-9

    Article  Google Scholar 

  8. Mutua J, Nakata S, Onda T, Chen ZC (2018) Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 139:486–497. https://doi.org/10.1016/j.matdes.2017.11.042

    Article  Google Scholar 

  9. Bai Y, Wang D, Yang Y, Wang H (2019) Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater Sci Eng A 760:105–117. https://doi.org/10.1016/j.msea.2019.05.115

    Article  Google Scholar 

  10. Chen Z, Wu X, Tomus D, Davies CHJ (2018) Surface roughness of selective laser melted Ti-6Al-4V alloy components. Addit Manuf 21:91–103. https://doi.org/10.1016/j.addma.2018.02.009

    Article  Google Scholar 

  11. Delfs P, Tows M, Schmid HJ (2016) Optimized build orientation of additive manufactured parts for improved surface quality and build time. Addit Manuf 12:314–320. https://doi.org/10.1016/j.addma.2016.06.003

    Article  Google Scholar 

  12. Promoppatum P, Yao SC (2019) Analytical evaluation of defect generation for selective laser melting of metals. Int J Adv Manuf Technol 103:1185–1198. https://doi.org/10.1007/s00170-019-03500-z

    Article  Google Scholar 

  13. Bai Y, Yang Y, Xiao Z, Wang D (2018) Selective laser melting of maraging steel: mechanical properties development and its application in mold. Rapid Prototyp J 24:623–629. https://doi.org/10.1108/RPJ-05-2017-0104

    Article  Google Scholar 

  14. Mohammadi M, Asgari H (2018) Achieving low surface roughness AlSi10Mg_200C parts using direct metal laser sintering. Addit Manuf 20:23–32. https://doi.org/10.1016/j.addma.2017.12.012

    Article  Google Scholar 

  15. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  16. Bhardwaj T, Shukla M (2018) Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater Sci Eng A 734:102–109. https://doi.org/10.1016/j.msea.2018.07.089

    Article  Google Scholar 

  17. Groover MP (2010) Fundamentals of modern manufacturing - materials, processes, and systems, 4th edn. Wiley, Hoboken

    Google Scholar 

  18. Lu C (2008) Study on prediction of surface quality in machining process. J Mater Process Technol 205:439–450. https://doi.org/10.1016/j.jmatprotec.2007.11.270

    Article  Google Scholar 

  19. Montgomery DC (2008) Design and analysis of experiments, 7th edn. Wiley, Hoboken

    Google Scholar 

  20. Lela B, Bajić D, Jozić S (2009) Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. Int J Adv Manuf Technol 42:1082–1088. https://doi.org/10.1007/s00170-008-1678-z

    Article  Google Scholar 

  21. Tomaz ÍV, Pardal JM, Fonseca MC (2019) Influence of minimum quantity lubrication in the surface quality of milled maraging steel. Int J Adv Manuf Technol 104:4301–4311. https://doi.org/10.1007/s00170-019-04262-4

    Article  Google Scholar 

  22. Lalwani DI, Mehta NK, Jain PK (2008) Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J Mater Process Technol 206:167–179. https://doi.org/10.1016/j.jmatprotec.2007.12.018

    Article  Google Scholar 

  23. Jeelani S, Ramakrishnan K (1985) Surface damage in machining titanium 6Al-2Sn-4Zr-2Mo alloy. J Mater Sci 20:3245–3252. https://doi.org/10.1007/BF00545191

    Article  Google Scholar 

  24. Habiby F, Siddiqui TN, Hussain H, Khan MA, ul Haq A, Khan AQ (1992) Machine-induced phase transformation in a maraging steel. Mater Sci Eng A 159:261–265. https://doi.org/10.1016/0921-5093(92)90297-E

    Article  Google Scholar 

  25. ASM International, ASM Handbook - Heat Treating (1991). https://doi.org/10.1016/S0026-0576(03)90166-8

  26. Tan C, Zhou K, Kuang M, Ma W, Kuang T (2018) Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci Technol Adv Mater 19:746–758. https://doi.org/10.1080/14686996.2018.1527645

    Article  Google Scholar 

  27. ASTM International, B962–13 - Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle (2013) 1–7. https://doi.org/10.1520/B0962-13.2

  28. Yin S, Chen C, Yan X, Feng X, Jenkins R, O’Reilly P, Liu M, Li H, Lupoi R (2018) The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit Manuf 22:592–600. https://doi.org/10.1016/j.addma.2018.06.005

    Article  Google Scholar 

  29. Conde FF, Escobar JD, Oliveira JP, Béreš M, Jardini AL, Bose WW, Avila JA (2019) Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel. Mater Sci Eng A 758:192–201. https://doi.org/10.1016/j.msea.2019.03.129

    Article  Google Scholar 

  30. ASTM International, E8/E8M Standard test methods for tension testing of metallic materials, Annu. B. ASTM Stand. 4. (2010) 1–27. https://doi.org/10.1520/E0008

  31. ASTM International, E92–16: Standard test methods for Vickers hardness and Knoop hardness of metallic materials, 2016

  32. Morel C, Cioca VV, Lavernhe S, Jardini AL, Conte E (2018) Part surface roughness on laser sintering and milling of maraging steel 300. 14th International Conference on High Speed Manufacturing, San-Sebastian, Spain. hal-01773243

  33. Kempen K, Yasa E, Thijs L, Kruth JP, Van Humbeeck J (2011) Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys Procedia 12:255–263. https://doi.org/10.1016/j.phpro.2011.03.033

    Article  Google Scholar 

  34. Demir AG, Previtali B (2017) Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int J Adv Manuf Technol 93:2697–2709. https://doi.org/10.1007/s00170-017-0697-z

    Article  Google Scholar 

  35. Hashimura M, Chang YP, Dornfeld D (1999) Analysis of burr formation mechanism in orthogonal cutting. J Manuf Sci Eng Trans ASME 121:1–7. https://doi.org/10.1115/1.2830569

    Article  Google Scholar 

  36. Maconachie T, Leary M, Zhang J, Medvedev A, Sarker A, Ruan D, Lu G, Faruque O, Brandt M (2020) Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg. Mater Sci Eng A 788. https://doi.org/10.1016/j.msea.2020.139445

  37. Chen W (2000) Cutting forces and surface finish when machining medium hardness steel using CBN tools. Int J Mach Tools Manuf 40:455–466. https://doi.org/10.1016/S0890-6955(99)00011-5

    Article  Google Scholar 

  38. Kaynak Y, Tascioglu E (2018) Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy. Procedia CIRP 71:500–504. https://doi.org/10.1016/j.procir.2018.05.013

    Article  Google Scholar 

  39. Du W, Bai Q, Zhang B (2018) Machining characteristics of 18Ni-300 steel in additive/subtractive hybrid manufacturing. Int J Adv Manuf Technol 95:2509–2519. https://doi.org/10.1007/s00170-017-1364-0

    Article  Google Scholar 

  40. Biondani F, Bissacco G, Hansen HN (2020) Surface topography analysis of ball end milled tool steel surfaces. Procedia CIRP. 87:153–158. https://doi.org/10.1016/j.procir.2020.03.002

    Article  Google Scholar 

  41. Navas VG, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57. https://doi.org/10.1016/j.ijmachtools.2012.05.008

    Article  Google Scholar 

  42. Bhardwaj T, Shukla M (2018) Direct metal laser sintering of maraging steel: effect of building orientation on surface roughness and microhardness. Mater Today Proc 5:20485–20491. https://doi.org/10.1016/j.matpr.2018.06.425

    Article  Google Scholar 

  43. Callister WD (2001) Fundamentals of materials science and engineering. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

Special thanks are due to Henrique Lopes de Castro, Allison Denis Carros Nizes, Osmando Cardoso, and Julián Arnaldo Ávila Diaz. The authors are grateful to the Multiuser Central Facilities (UFABC) for the experimental support.

Funding

Project grant #2018/11282-0, São Paulo Research Foundation (FAPESP). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Del Conte.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.R., Jardini, A.L. & Del Conte, E.G. Effects of cutting parameters on roughness and residual stress of maraging steel specimens produced by additive manufacturing. Int J Adv Manuf Technol 111, 2449–2459 (2020). https://doi.org/10.1007/s00170-020-06309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06309-3

Keywords

Navigation