Skip to main content
Log in

A review on magnetic abrasive finishing

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnetic abrasive finishing (MAF) has attracted much attention as an advanced nano-finishing technology in achieving high-quality surface for finishing superalloys, composites, and ceramics. This paper provides a comprehensive review on MAF process which is mainly organized by different six sections, including MAF principles, magnetic abrasive preparation, MAF tools, MAF modeling and simulation, MAF characteristics, and challenges and future directions. The principle of MAF for internal workpiece and flat workpiece is mainly introduced. Magnetic preparation methods, including simply mixing method, bonding method, sintering method, gas atomization, and rapid solidification method, are described in detail. The design of MAF tools for outer surface and inner surface is summarized. It also covers some models and simulations to predict optimal processing parameters. Force measurement and material removal mechanism to explore the MAF processes are performed. Finally, challenges and future directions are provided. This review is beneficial to researchers and practitioners in the MAF-related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Guo DM, Sun YW, Jia ZY (2014) Methods and research progress of high-performance manufacturing. J Mech Eng 50(11):119–134. https://doi.org/10.3901/JME.2014.11.119

    Article  Google Scholar 

  2. Heo JS, Koo Y, Choi SS (2004) Grinding characteristics of conventional and ELID methods in difficult-to-cut and hardened brittle materials. J Mater Process Technol 155-156:1196–1200. https://doi.org/10.1016/j.jmatprotec.2004.04.394

    Article  Google Scholar 

  3. Evans CJ, Paul E, Dornfeld D, Lucca DA, Byrne G, Tricard M, Klocke F (2003) Material removal mechanisms in lapping and polishing. CIRP Ann 52(2):611–633. https://doi.org/10.1016/S0007-8506(07)60207-8

    Article  Google Scholar 

  4. Dubey AK, Shan HS, Jain NK (2008) Analysis of surface roughness and out-of-roundness in the electro-chemical honing of internal cylinders. Int J Adv Manuf Technol 38(5-6):491–500. https://doi.org/10.1007/s00170-007-1180-z

    Article  Google Scholar 

  5. Houshi MN (2016) A Comprehensive review on magnetic abrasive finishing process. Adv Eng Forum 18:1–20. https://doi.org/10.4028/www.scientific.net/AEF.18.1

    Article  Google Scholar 

  6. Kumari C, Chak SK (2018) A review on magnetically assisted abrasive finishing and their critic-al process parameters. Manuf Rev 5(13):1–16. https://doi.org/10.1051/mfreview/2018010

    Article  Google Scholar 

  7. Jha S, Jain VK (2006) Nano finishing Techniques. In: Micromanufacturing and Nanotechnology. Springer, Berlin, pp 171–195

    Chapter  Google Scholar 

  8. Mori Y, Ikawa N, Sugiyama K (1978) Elastic emission machining. Stress field and fracture mechanism. Technology Reports of the Osaka University 28(1430-1458):525–532

  9. Spencer EG, Schmidt PH (1971) Ion-Beam Techniques for Device Fabrication. J Vac Sci Technol 8(5):52–70. https://doi.org/10.1116/1.1316390

    Article  Google Scholar 

  10. Kim TW, Kang DM, Kwak JS (2010) Application of magnetic abrasive polishing to composite materials. J Mech Sci Technol 24(5):1029–1034. https://doi.org/10.1007/s12206-010-0323-6

    Article  Google Scholar 

  11. Du ZW, Chen Y, Zhou K, Li C (2015) Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169. Int J Adv Manuf Technol 81(5-8):897–903. https://doi.org/10.1007/s00170-015-7270-4

    Article  Google Scholar 

  12. Zou Y, Xie HJ, Dong CW, Wu JZ (2018) Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field. Int J Adv Manuf Technol 97(5-8):2193–2202. https://doi.org/10.1007/s00170-018-2064-0

    Article  Google Scholar 

  13. Vahdati M, Sadeghinia E, Shokuhfar A (2010) Magnetic assisted abrasion, a new method for nano level surface finishing. Diffus Defect Forum 297-301:402–407. https://doi.org/10.4028/www.scientific.net/ddf.297-301.402

    Article  Google Scholar 

  14. Chang GW, Yan BH, Hsu RT (2002) Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasive. Int J Mach Tools Manuf 42(5):575–583. https://doi.org/10.1016/s0890-6955(01)00153-5

    Article  Google Scholar 

  15. Wang AC, Tsai L, Lin YC, Wu KL (2013) Evaluation of rheological properties of gel abrasive in magnetic abrasive finishing. Adv Mech Eng 2013:1–7. https://doi.org/10.1155/2013/493780

    Article  Google Scholar 

  16. Niknam SA, Davoodi B, Davim P, Songmene V (2018) Mechanical deburring and edge-finishing processes for aluminum parts—a review. Int J Adv Manuf Technol 95:1101–1125. https://doi.org/10.1007/s00170-017-1288-8

    Article  Google Scholar 

  17. Yan BH, Chang GW, Cheng TJ, Hsu RT (2003) Electrolytic magnetic abrasive finishing. Int J Mach Tools Manuf 46(13):1355–1366. https://doi.org/10.1016/S0890-6955(03)00151-2

    Article  Google Scholar 

  18. Kanish TC, Narayanan S, Kuppan P, Ashok SD (2017) Investigations on the finishing forces in magnetic field assisted abrasive finishing of SS316L. Procedia Eng 174:611–620. https://doi.org/10.1016/j.proeng.2017.01.196

    Article  Google Scholar 

  19. Ganguly V, Schmitz T, Graziano A, Yamaguchi H (2013) Force measurement and analysis for magnetic field–assisted finishing. J Manuf Sci Eng 135(4):041016. https://doi.org/10.1115/1.4023723

    Article  Google Scholar 

  20. Singh RK, Singh DK, Gangwar S (2018) Advances in magnetic abrasive finishing for futuristic requirements - a review. Mater Today Proc 5(9):20455–20463. https://doi.org/10.1016/j.matpr.2018.06.422

    Article  Google Scholar 

  21. Heng L, Kim YJ, Mun SD (2017) Review of superfinishing by the magnetic abrasive finishing process. High Speed Mach 3(1):42–55. https://doi.org/10.1515/hsm-2017-0004

    Article  Google Scholar 

  22. Yamaguchi H, Shinmura T (2004) Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process. Precis Eng 28(2):135–142. https://doi.org/10.1016/j.precisioneng.2003.07.001

    Article  Google Scholar 

  23. Barman A, Das M (2018) Simulation and experimental investigation of finishing forces in magnetic field assisted finishing process. Mater Manuf Process 33(11):1223–1232. https://doi.org/10.1080/10426914.2018.1453157

    Article  Google Scholar 

  24. Mulik RS, Pandey PM (2011) Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasive. Int J Refract Met Hard Mater 29(1):68–77. https://doi.org/10.1016/j.ijrmhm.2010.08.002

    Article  Google Scholar 

  25. Zhou K, Chen Y, Du ZW, Niu FL (2015) Surface integrity of titanium part by ultrasonic magnetic abrasive finishing. Int J Adv Manuf Technol 80(5-8):997–1005. https://doi.org/10.1007/s00170-015-7028-z

    Article  Google Scholar 

  26. Zhang GX, Zhao YG, Zhao DB, Yin FS, Zhao ZD (2011) Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification. Scr Mater 65(5):416–419. https://doi.org/10.1016/j.scriptamat.2011.05.021

    Article  Google Scholar 

  27. Li WH, Li XH, Yang SQ, Li WD (2018) A newly developed media for magnetic abrasive finishing process: material removal behavior and finishing performance. J Mater Process Technol 260:20–29. https://doi.org/10.1016/j.jmatprotec.2018.05.007

    Article  Google Scholar 

  28. Chen Y, Song QH, Wang X (2007) Study on the characteristics of simply mixed the magnetic abrasive particles. Adv Mater Res 24-25:133–138. https://doi.org/10.4028/www.scientific.net/AMR.24-25.133

    Article  Google Scholar 

  29. Ahn BW, Lee SH (2012) Run-to-run process control of magnetic abrasive finishing using bonded abrasive particles. Proc Inst Mech Eng B J Eng Manuf 226(12):1963–1975. https://doi.org/10.1177/0954405412462318

    Article  Google Scholar 

  30. Liao GB, Zhang MM, Li YJ, Liu ZQ, Chen Y (2011) Preparation of magnetic abrasive by sintering method finishing by sintering method. Key Eng Mater 487:273–277. https://doi.org/10.4028/www.scientific.net/kem.487.273

    Article  Google Scholar 

  31. Chen Y, Zhang MM, Liu ZQ (2011) Study on sintering process of magnetic abrasive particles. Adv Mater Res 337:163–167. https://doi.org/10.4028/www.scientific.net/amr.337.163

    Article  Google Scholar 

  32. Chen HL, Li WH, Yang SQ, Yang SC (2010) Research of magnetic abrasive prepared by hot pre-ssing sintering process. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, pp 776–778. https://doi.org/10.1109/ICIEA.2010.5516736

    Chapter  Google Scholar 

  33. Zhao ZD, Huang YH, Zhao YG (2010) Preparation of magnetic abrasive by sintering method. Adv Mater Res 135:382–387. https://doi.org/10.4028/www.scientific.net/amr.135.382

    Article  Google Scholar 

  34. Hu B, Lu YP (2012) Study on preparation technology and finishing performance of magnetic abrasive grain. Adv Mater Res 452-453:637–641. https://doi.org/10.4028/www.scientific.net/amr.452-453.637

    Article  Google Scholar 

  35. Gao YG, Zhao YG, Zhang GG (2018) Preparation of Al2O3 magnetic abrasive by gas-solid two-phase double-stage atomization and rapid solidification. Mater Lett 215:300–304. https://doi.org/10.1016/j.matlet.2017.12.124

    Article  Google Scholar 

  36. Yang LD, Lin CT, Chou HM (2009) Optimization in MAF operations using Taguchi parameter design for AISI304 stainless steel. Int J Adv Manuf Technol 595(42):595–605. https://doi.org/10.1007/s00170-008-1612-4

    Article  Google Scholar 

  37. Shukla VC, Pandey PM, Dixit US, Roy A, Silberschmidt V (2017) Modeling of normal force and finishing torque considering shearing and ploughing effects in ultrasonic assisted magnetic abrasive finishing process with sintered magnetic abrasive powder. Wear 15(390-191):11–22. https://doi.org/10.1016/j.wear.2017.06.017

    Article  Google Scholar 

  38. Qin P, Zhang GX, Zhao YG, Jiang LZ, Teng X, Liang JP (2020) Study of CBN/Fe-based spherical magnetic abrasive bonding interfacial microstructure prepared by gas atomization with rapid solidification. Adv Powder Technol 31(4):1597–1602. https://doi.org/10.1016/j.apt.2020.01.036

    Article  Google Scholar 

  39. Fan ZH, Tian YB, Zhou Q, Shi C (2020) Enhanced magnetic abrasive finishing of Ti–6Al–4 V using shear thickening fluids additives. Precis Eng 64:300–306. https://doi.org/10.1016/j.precisioneng.2020.05.001

    Article  Google Scholar 

  40. Kanish TC, Narayanan S, Kuppan P, Denis AS (2018) Investigations on wear behavior of magnetic field assisted abrasive finished SS316L material. Mater Today Proc 5(5):12734–12743. https://doi.org/10.1016/j.matpr.2018.02.257

    Article  Google Scholar 

  41. Kwak JS (2009) Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet. Int J Mach Tools Manuf 49(7-8):613–618. https://doi.org/10.1016/j.ijmachtools.2009.01.013

    Article  Google Scholar 

  42. Kala P, Pandey PM, Verma GC, Sharma V (2017) Understanding flexible abrasive brush behavior for double disk magnetic abrasive finishing based on force signature. J Manuf Process 28(3):442–448. https://doi.org/10.1016/j.jmapro.2017.04.010

  43. Laroux KG (2008) Using magnetic abrasive finishing for deburring produces parts that perform well and look great. Alluring and Deburring. https://www.yumpu.com/en/document/read/11479441. Accessed 17 June 2020

  44. Sato T, Kum CW, Venkatesh VC (2013) Rapid magneto-rheological finishing of ti-6al-4v for aerospace components. Int J Nanomanuf 9(5/6):431. https://doi.org/10.1504/IJNM.2013.057590

    Article  Google Scholar 

  45. Fan ZH, Tian YB, Liu ZQ, Shi C, Zhao YG (2019) Investigation of a novel finishing tool in magnetic field assisted finishing for titanium alloy Ti-6Al-4 V. J Manuf Process 43:74–82. https://doi.org/10.1016/j.jmapro.2019.05.007

    Article  Google Scholar 

  46. Tian YB, Shi C, Fan ZH, Zhou Q (2020) Experimental investigations on magnetic abrasive finishing of ti-6al-4v using a multiple pole-tip finishing tool. Int J Adv Manuf Technol 106:3071–3080. https://doi.org/10.1007/s00170-019-04871-z

    Article  Google Scholar 

  47. Jain NK, Jain VK, Jha S (2006) Parametric optimization of advanced fine-finishing processes. Int J Adv Manuf Technol 34(11-12):1191–1213. https://doi.org/10.1007/s00170-006-0682-4

    Article  Google Scholar 

  48. Xie HJ, Zou YH, Dong CW, Wu JZ (2019) Study on the magnetic abrasive finishing process using alternating magnetic field: investigation of mechanism and applied to aluminum alloy plate. Int J Adv Manuf Technol 102(5-8):1509–1520. https://doi.org/10.1007/s00170-018-03268-8

    Article  Google Scholar 

  49. Yang SQ, Li WH (2018) Surface finishing theory and new technology. Heidelberg, Berlin

    Book  Google Scholar 

  50. Shinmura T, Takazawa K, Hatano E, Matsunaga M, Matsuo T (1990) Study on magnetic abrasive finishing. CIRP Ann 39(1):325–328. https://doi.org/10.1016/s0007-8506(07)61064-6

    Article  Google Scholar 

  51. Yamaguchi H, Shinmura T (1996) Study on a new internal finishing process by the application of magnetic abrasive machining. Int J Jpn Soc Precis Eng 62(11):1617–1621. https://doi.org/10.2493/jjspe.62.1617

    Article  Google Scholar 

  52. Shinmura T, Yamaguchi H (1995) Study on a new internal finishing process by the application of magnetic abrasive machining internal finishing of stainless-steel tube and clean gas bomb. JSME International Journal. Ser C, Dynamics, Control, Robotics, Design And Manufacturing 38(4):798–804. https://doi.org/10.1299/jsmec1993.38.798

    Article  Google Scholar 

  53. Yamaguchi H, Shinmura T (1999) Study of the surface modification resulting from an internal magnetic abrasive finishing process. Wear 225-229:246–255. https://doi.org/10.1016/s0043-1648(99)00013-7

    Article  Google Scholar 

  54. Yamaguchi H, Shinmura T, Takenaga M (2003) Development of a new precision internal machining process using an alternating magnetic field. Precis Eng 27(1):51–58. https://doi.org/10.1016/s0141-6359(02)00177-0

    Article  Google Scholar 

  55. Sato T, Yamaguchi H, Shinmura T (2007) Study of internal magnetic field assisted finishing for copper tubes with MRF (Magneto-rheological Fluid)-based Slurry. Key Eng Mater 329:249–254. https://doi.org/10.4028/www.scientific.net/KEM.329.249

    Article  Google Scholar 

  56. Singh P, Samra PS, Singh L (2011) Internal finishing of cylindrical pipes using sintered magnetic abrasive. Int J Eng Sci Technol 3:5474–5753 www.researchgate.net/publication/267566264. Accessed 17 Jan 2020

  57. Wang D, Shinmura T, Yamaguchi H (2004) Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components. Int J Mach Tools Manuf 44(14):1547–1553. https://doi.org/10.1016/j.ijmachtools.2004.04.024

    Article  Google Scholar 

  58. Li XH (2010) Theoretical analysis and experimental study on hole surface finishing new technology based on magnetic field characteristics. Dissertation, Taiyuan University of Technology

  59. Kang J, Yamaguchi H (2012) Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system. Precis Eng 36(3):510–516. https://doi.org/10.1016/j.precisioneng.2012.01.006

    Article  Google Scholar 

  60. Shanbhag VV, Naveen K, Balashanmugam N, Vinod P (2016) Modelling for evaluation of surface roughness in magnetic abrasive finishing of flat surfaces. Int J Precis Technol 6(2):159–170. https://doi.org/10.1504/IJPTECH.2016.078190

    Article  Google Scholar 

  61. Lu A, Jin T, Liu Q, Guo Z, Qu M, Luo H, Han M (2019) Modeling and prediction of surface topography and surface roughness in dual-axis wheel polishing of optical glass. Int J Mach Tools Manuf 137:13–29. https://doi.org/10.1016/j.ijmachtools.2018.10.001

    Article  Google Scholar 

  62. Mosavat M, Rahimi A (2019) Simulation and experimental study on the effect of abrasive size, rotational speed, and machining gap during ultra-precision polishing of monocrystalline silicon. Colloids Surf A Physicochem Eng Asp 575(20):50–56. https://doi.org/10.1016/j.colsurfa.2019.05.005

    Article  Google Scholar 

  63. Jain VK, Jayswal SC, Dixit PM (2007) Modeling and Simulation of Surface Roughness in Magnetic abrasive finishing Using Non-Uniform Surface Profiles. Mater Manuf Process 22(2):256–270. https://doi.org/10.1080/10426910601134096

    Article  Google Scholar 

  64. Kajal S, Jain VK, Ramkumar J, Nagdeve L (2017) Experimental and theoretical investigations into internal magnetic abrasive finishing of a revolver barrel. Int J Adv Manuf Technol 100:1105–1122. https://doi.org/10.1007/s00170-017-1220-2

    Article  Google Scholar 

  65. Kala P, Pandey PM (2015) Comparison of finishing characteristics of two paramagnetic materials using double disc magnetic abrasive finishing. J Manuf Process 17:63–77. https://doi.org/10.1016/j.jmapro.2014.07.007

    Article  Google Scholar 

  66. Kala P, Sharma V, Pandey PM (2017) Surface roughness modelling for double disk Magnetic abrasive finishing process. J Manuf Process 25:37–48. https://doi.org/10.1016/j.jmapro.2016.10.007

    Article  Google Scholar 

  67. Yun H, Han B, Chen Y, Liao M (2015) Internal finishing process of alumina ceramic tubes by ultrasonic-assisted magnetic abrasive finishing. Int J Adv Manuf Technol 85(1-4):727–734. https://doi.org/10.1007/s00170-015-7927-z

    Article  Google Scholar 

  68. Jiao AY, Quan HJ, Li ZZ, Zou YH (2015) Study on improving the trajectory to elevate the surface quality of plane magnetic abrasive finishing. Int J Adv Manuf Technol 80(9-12):1613–1623. https://doi.org/10.1007/s00170-015-7136-9

    Article  Google Scholar 

  69. Jayswal SC (2004) Analysis of magnetic abrasive finishing with slotted magnetic pole. AIP Conf Proc 721(1):1435–1440. https://doi.org/10.1063/1.1766730

    Article  Google Scholar 

  70. Srinivas K, Murtaza Q, Aggarwal AK (2019) Effect of shape of magnet on the machining of workpiece. Int J Technol Eng 8(2S11):2909–2913. https://doi.org/10.35940/ijrte.B1367.0982S1119

    Article  Google Scholar 

  71. Zhao YG, Jiang YC, Zhou JJ (1999) Study on the influence of the shape and size of the magnetic pole slot on the magnetic field distribution and the magnetic particle finishing ability. China Mech Eng 06:93–96 https://doi.org/CNKI:SUN:ZGJX.0.1999-06-027

    Google Scholar 

  72. Yin SH, Zhu KJ, Fan YF, Zhu YJ, Chen Y, Wang Y (2010) Influences of polishing tool’s shape on surface roughness in magneto-rheological finishing. Adv Mater Res 97-101:4092–4095. https://doi.org/10.4028/www.scientific.net/AMR.97-101.4092

    Article  Google Scholar 

  73. Liu WY, Zhang GX (2013) Design and simulation of plane magnet pole on magnetic abrasive finishing. Mod Manuf Eng 7:76–81 https://doi.org/CNKI:SUN:XXGY.0.2013-07-017

    Google Scholar 

  74. Zhao WC, Zhang GX, Chen CZ (2016) Design and simulation research of the magnetic poles’ structure parameters on magnetic abrasive finishing system. Mach Des Res 32(06):106–109 https://doi.org/CNKI:SUN:JSYY.0.2016-06-030

    Google Scholar 

  75. Zhang P, Zhang G, Liang W, Qin P, Jiang L (2018) Research on magnetic abrasive finishing processes of aluminum-magnesium alloy permanent magnet poles. China Mech Eng 29(11):1324–1328. https://doi.org/10.3969/j.issn.1004-132X.2018.11.011

    Article  Google Scholar 

  76. Mishra V, Goel H, Mulik RS, Pandey PM (2014) Determining work-brush interface temperature in magnetic abrasive finishing process. J Manuf Process 16(2):248–256. https://doi.org/10.1016/j.jmapro.2013.10.004

    Article  Google Scholar 

  77. Wang R, Park JH, Heng L, Kim Y, Jeong JY, Mun SD (2018) Effect of temperature on the magnetic abrasive finishing process of Mg alloy bars. J Mech Sci Technol 32(5):2227–2235. https://doi.org/10.1007/s12206-018-0433-0

    Article  Google Scholar 

  78. Singh RK, Gangwar S, Singh DK (2019) Experimental investigation on temperature-affected magnetic abrasive finishing of aluminum 6060. Mater Manuf Process 34(11):1274–1285. https://doi.org/10.1080/10426914.2019.1628263

    Article  Google Scholar 

  79. Mosavat M, Rahimi A (2019) Numerical-experimental study on polishing of silicon wafer using magnetic abrasive finishing process. Wear 424-425:143–150. https://doi.org/10.1016/j.wear.2019.02.007

    Article  Google Scholar 

  80. Jayswal SC, Jain VK, Dixit PM (2005) Modeling and simulation of magnetic abrasive finishing process. Int J Adv Manuf Technol 26(5-6):477–490. https://doi.org/10.1007/s00170-004-2180-x

    Article  Google Scholar 

  81. Madhab GB, Jain VK, Dixit PM (2006) On simulation of magnetic abrasive finishing process for plane surfaces using FEM. Int J Mach Mach Mater 1(2):133–165. https://doi.org/10.1504/ijmmm.2006.011063

    Article  Google Scholar 

  82. Judal KB, Yadava V (2014) Modeling and Simulation of Cylindrical Electrochemical Magnetic Abrasive Machining Process. Mach Sci Technol 18(2):221–250. https://doi.org/10.1080/10910344.2014.897841

    Article  Google Scholar 

  83. Judal KB, Yadava V (2012) Experimental investigations into cylindrical electro-chemical magnetic abrasive machining of AISI-420 magnetic stainless steel. Int J Abras Technol 5(4):315–331. https://doi.org/10.1504/ijat.2012.052039

    Article  Google Scholar 

  84. Kim JD, Choi MS (1995) Simulation for the prediction of surface-accuracy in magnetic abrasive machining. J Mater Process Technol 53(3-4):630–642. https://doi.org/10.1016/0924-0136(94)01753-n

    Article  Google Scholar 

  85. Kim JD, Choi MS (1997) Study on magnetic polishing of free-form surfaces. Int J Mach Tools Manuf 37(8):1179–1187. https://doi.org/10.1016/s0890-6955(95)00078-x

    Article  Google Scholar 

  86. Mori T, Hirota K, Kawashima Y (2003) Clarification of magnetic abrasive finishing mechanism. J Mater Process Technol 143-144:682–686. https://doi.org/10.1016/s0924-0136(03)00410-2

    Article  Google Scholar 

  87. Singh DK, Jain VK, Raghuram V (2004) Parametric study of magnetic abrasive finishing process. J Mater Process Technol 149(1-3):22–29. https://doi.org/10.1016/j.jmatprotec.2003.10.030

    Article  Google Scholar 

  88. Singh DK, Jain VK, Raghuram V (2005) Experimental investigations into forces acting during a magnetic abrasive finishing process. Int J Adv Manuf Technol 30(7-8):652–662. https://doi.org/10.1007/s00170-005-0118-6

    Article  Google Scholar 

  89. Preston FW (1927) The theory and design of plate glass polishing machines. J Soc Glas Technol 11:214–256

    Google Scholar 

  90. Buijs M, Houten KV (1993) A model for lapping of glass. J Mater Sci 28(11):3014–3020. https://doi.org/10.1007/BF00354706

    Article  Google Scholar 

  91. DeGroote JE, Marino AE, Wilson JP, Bishop AL, Lambropoulos JC, Jacobs SD (2007) Removal rate model for magnetorheological finishing of glass. Appl Opt 46(32):7927–7941. https://doi.org/10.1364/ao.46.007927

    Article  Google Scholar 

  92. Yin SH (2009) Magnetic field assisted ultra-precision finishing. Hunan University Press, Hunan, pp 16–21

  93. Chen F, Yin S, Yu J, Xu Z (2011) New progresses on magnetorheological finishing (MRF) techno-logy. China Mech Eng 22(19):2382–2239 https:// doi.org/CNKI:SUN:ZGJX.0.2011-19-023

    Google Scholar 

  94. Wani AM, Yadava V, Khatri A (2007) Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF). J Mater Process Technol 190(1-3):282–290. https://doi.org/10.1016/j.jmatprotec.2007.02.036

    Article  Google Scholar 

  95. Zhang F, Zhang XJ (2000) Yu J (2000) Mathematics model of magnetorheological finishing. Adv Opt Manuf Test Technol. https://doi.org/10.1117/12.402796

  96. Chen FJ, Yin SH, Ohmori H (2008) Two-dimension modelling for material removal of magneto-rheological finishing. China Mech Eng 20(14):1647–1650

    Google Scholar 

  97. Li YM, Shen XQ, Wang AL (2010) Research on material removal modeling and processing parameters of magnetorheological finishing. Adv Mater Res 102-104:746–749. https://doi.org/10.4028/www.scientific.net/AMR.102-104.746

    Article  Google Scholar 

  98. Misra AM, Pandey P, Dixit US (2017) Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process. Int J Mech Sci 131-132:853–867. https://doi.org/10.1016/j.ijmecsci.2017.07.023

    Article  Google Scholar 

  99. Yuan JL, MAO MJ, Li M, Liu S, Hu ZH, Wu F (2019) Chemical and mechanical polishing mechanism of cemented carbide tool material. Surf Technol 48(2):260–267. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.02.037

    Article  Google Scholar 

  100. Kum CW, Sato T, Guo J, Liu K, Butler D (2018) A novel media properties-based material removal rate model for magnetic field-assisted finishing. Int J Mech Sci 141:189–197. https://doi.org/10.1016/j.ijmecsci.2018.04.006

    Article  Google Scholar 

  101. Archard JF (1953) Contact and Rubbing of Flat Surfaces. J Appl Phys 24(8):981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  102. Tian YB, Zhong ZW, Tan SJ (2016) Kinematic analysis and experimental investigation on vibratory finishing. Int J Adv Manuf Technol 86(9-12):3113–3121. https://doi.org/10.1007/s00170-016-8378-x

    Article  Google Scholar 

  103. Zhang J, Chaudhari A, Wang H (2019) Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316 L stainless steel. J Manuf Process 45:710–719. https://doi.org/10.1016/j.jmapro.2019.07.044

    Article  Google Scholar 

  104. Weisstein E (2019) Circular segment. https://mathworld.wolfram.com/CircularSegment.html. Accessed 17 June 2020

  105. Ma FJ, Luan SY, Luo QC (2019) Effects of ultrasonic assisted magnetic abrasive finishing on surface integrity of titanium alloy. China Surf Eng 32(02):128–136. https://doi.org/10.11933/j.issn.1007-9289.20181105001

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial supports by the National Natural Science Foundation of China (Grant No. 51875329 and 51905323), Taishan Scholar Special Foundation of Shandong Province (Grant No. tsqn201812064), Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MEE050), Shandong Provincial Key Research and Development Project, China (Grant No. 2018GGX103008), Scientific Innovation Project for Young Scientists in Shandong Provincial Universities (Grant No. 2019KJB030), and Key Research and Development Project of Zibo City (Grant No. 2019ZBXC070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebing Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Fan, Z., Tian, Y. et al. A review on magnetic abrasive finishing. Int J Adv Manuf Technol 112, 619–634 (2021). https://doi.org/10.1007/s00170-020-06363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06363-x

Keywords

Navigation