Skip to main content

Advertisement

Log in

Current trends and research opportunities in hybrid additive manufacturing

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Despite the rapid growth in the past decade, the industrial adoption of additive manufacturing has not still been achieved due to certain limitations. A recent trend to alleviate its inherent drawbacks is to integrate additive manufacturing with secondary production techniques. Indeed, hybrid additive manufacturing solutions may help overcome the current barriers to today’s production systems by making use of the combined merits of merging technologies. This paper presents a comprehensive review of the current state-of-the-art in the field, covering the following three key aspects of the subject: (i) advances in the hybridization of additive manufacturing processes, (ii) developments in process planning for integrated technologies, and (iii) insights into the hybrid additive manufacturing industry. The main objective of the paper is to classify the latest knowledge for the researchers, along with highlighting challenges and future research directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

References

  1. Nassehi A, Newman S, Dhokia V, Zhu Z, Asrai RI (2012) Using formal methods to model hybrid manufacturing processes. Enabling Manuf Compet Econ Sustain:52–56. https://doi.org/10.1007/978-3-642-23860-4_8

  2. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manuf 11(June):545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  3. Zhu Z, Dhokia VG, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes - state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615. https://doi.org/10.1080/0951192X.2012.749530

    Article  Google Scholar 

  4. Kendrick BA, Dhokia V, Newman ST (2017) Strategies to realize decentralized manufacture through hybrid manufacturing platforms. Robot Comput Integr Manuf 43:68–78. https://doi.org/10.1016/j.rcim.2015.11.007

    Article  Google Scholar 

  5. Chen T, Tsai HR (2017) Ubiquitous manufacturing: current practices, challenges, and opportunities. Robot Comput Integr Manuf 45:126–132. https://doi.org/10.1016/j.rcim.2016.01.001

    Article  Google Scholar 

  6. Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587. https://doi.org/10.1016/j.jclepro.2016.04.150

    Article  Google Scholar 

  7. Flynn JM, Shokrani A, Newman ST, Dhokia V (2016) Hybrid additive and subtractive machine tools - research and industrial developments. Int J Mach Tools Manuf 101:79–101. https://doi.org/10.1016/j.ijmachtools.2015.11.007

    Article  Google Scholar 

  8. Cortina M, Arrizubieta JI, Ruiz JE, Ukar E, Lamikiz A (2018) Latest developments in industrial hybrid machine tools that combine additive and subtractive operations. Materials (Basel) 11(12). https://doi.org/10.3390/ma11122583

  9. Sealy MP, Madireddy G, Williams RE, Rao P, Toursangsaraki M (2018) Hybrid processes in additive manufacturing. J Manuf Sci Eng Trans ASME 140(6):1–13. https://doi.org/10.1115/1.4038644

    Article  Google Scholar 

  10. Chong L, Ramakrishna S, Singh S (2018) A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol 95(5–8):2281–2300. https://doi.org/10.1007/s00170-017-1345-3

    Article  Google Scholar 

  11. Chohan JS, Singh R (2017) Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp J 23(3):495–513. https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  12. Delfs P, Tows M, Schmid HJ (2016) Optimized build orientation of additive manufactured parts for improved surface quality and build time. Addit Manuf 12:314–320. https://doi.org/10.1016/j.addma.2016.06.003

    Article  Google Scholar 

  13. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  14. Mohamed OA, Masood SH, Bhowmik JL (2016) Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement 81:174–196. https://doi.org/10.1016/j.measurement.2015.12.011

    Article  Google Scholar 

  15. Pérez M, Medina-Sánchez G, García-Collado A, Gupta M, Carou D (2018) Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials (Basel) 11(8). https://doi.org/10.3390/ma11081382

  16. ISO 17296-2:2015 Additive manufacturing - general principles - part 2: overview of process categories and feedstock. https://www.iso.org/standard/61626.html. Accessed Jan 2015

  17. Taufik M, Jain PK (2017) Laser assisted finishing process for improved surface finish of fused deposition modelled parts. J Manuf Process 30:161–177. https://doi.org/10.1016/j.jmapro.2017.09.020

    Article  Google Scholar 

  18. Kaveh M, Badrossamay M, Foroozmehr E, Hemasian Etefagh A (2015) Optimization of the printing parameters affecting dimensional accuracy and internal cavity for HIPS material used in fused deposition modeling processes. J Mater Process Technol 226:280–286. https://doi.org/10.1016/j.jmatprotec.2015.07.012

    Article  Google Scholar 

  19. Bhushan B, Caspers M (2017) An overview of additive manufacturing (3D printing) for microfabrication. Microsyst Technol 23(4):1117–1124. https://doi.org/10.1007/s00542-017-3342-8

    Article  Google Scholar 

  20. Armillotta A, Cavallaro M (2017) Edge quality in fused deposition modeling: I. Definition and analysis. Rapid Prototyp J 23(6):1079–1087. https://doi.org/10.1108/RPJ-02-2016-0020

    Article  Google Scholar 

  21. Singh D, Singh R, Boparai KS (2018) Development and surface improvement of FDM pattern based investment casting of biomedical implants: a state of art review. J Manuf Process 31:80–95. https://doi.org/10.1016/j.jmapro.2017.10.026

    Article  Google Scholar 

  22. Taufik M, Jain PK (2020) Part surface quality improvement studies in fused deposition modelling process: a review. Aust J Mech Eng 00(00):1–25. https://doi.org/10.1080/14484846.2020.1723342

    Article  Google Scholar 

  23. Lee WC, Wei CC, Chung SC (2014) Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. J Mater Process Technol 214(11):2366–2374. https://doi.org/10.1016/j.jmatprotec.2014.05.004

    Article  Google Scholar 

  24. McCullough EJ, Yadavalli VK (2013) Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. J Mater Process Technol 213(6):947–954. https://doi.org/10.1016/j.jmatprotec.2012.12.015

    Article  Google Scholar 

  25. Tomal ANMA, Saleh T, Khan MR (2017) Improvement of dimensional accuracy of 3-d printed parts using an additive/subtractive based hybrid prototyping approach. IOP Conf Ser Mater Sci Eng 260(012031). https://doi.org/10.1088/1757-899X/260/1/012031

  26. Nsengimana J, Van der Walt J, Pei E, Miah M (2019) Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts. Rapid Prototyp J 25(1):1–12. https://doi.org/10.1108/RPJ-09-2016-0153

    Article  Google Scholar 

  27. Grguraš D, Kramar D (2017) Optimization of hybrid manufacturing for surface quality, material consumption and productivity improvement. Stroj Vestnik/J Mech Eng 63(10):567–576. https://doi.org/10.5545/sv-jme.2017.4396

    Article  Google Scholar 

  28. Li L, Haghighi A, Yang Y (2019) Theoretical modelling and prediction of surface roughness for hybrid additive–subtractive manufacturing processes. IISE Trans 51(2):124–135. https://doi.org/10.1080/24725854.2018.1458268

    Article  Google Scholar 

  29. Williams RE, Melton VL (1998) Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp J 4(2):56–67. https://doi.org/10.1108/13552549810207279

    Article  Google Scholar 

  30. Mali HS, Prajwal B, Gupta D, Kishan J (2018) Abrasive flow finishing of FDM printed parts using a sustainable media. Rapid Prototyp J 24(3):593–606. https://doi.org/10.1108/RPJ-10-2017-0199

    Article  Google Scholar 

  31. Fischer M, Schoppner V (2013) Some investigations regarding the surface treatment of ultem parts manufactured with fused deposition modeling. In: Solid Freeform Fabrication Proceedings, pp 805–815

  32. Boschetto A, Bottini L (2015) Roughness prediction in coupled operations of fused deposition modeling and barrel finishing. J Mater Process Technol 219:181–192. https://doi.org/10.1016/j.jmatprotec.2014.12.021

    Article  Google Scholar 

  33. Boschetto A, Bottini L (2015) Surface improvement of fused deposition modeling parts by barrel finishing. Rapid Prototyp J 21(6):686–696. https://doi.org/10.1108/RPJ-10-2013-0105

    Article  Google Scholar 

  34. Singh R, Singh M (2017) Surface roughness improvement of cast components in vacuum moulding by intermediate barrel finishing of fused deposition modelling patterns. Proc Inst Mech Eng E J Process Mech Eng 231(2):309–316. https://doi.org/10.1177/0954408915595576

    Article  Google Scholar 

  35. Singh R, Singh S, Singh IP, Fabbrocino F, Fraternali F (2017) Investigation for surface finish improvement of FDM parts by vapor smoothing process. Compos B Eng 111:228–234. https://doi.org/10.1016/j.compositesb.2016.11.062

    Article  Google Scholar 

  36. Kuo CC, Wang CW, Lee YF, Liu YL, Qiu QY (2017) A surface quality improvement apparatus for ABS parts fabricated by additive manufacturing. Int J Adv Manuf Technol 89(1–4):635–642. https://doi.org/10.1007/s00170-016-9129-8

    Article  Google Scholar 

  37. Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19):3838–3842

    Google Scholar 

  38. Garg A, Bhattacharya A, Batish A (2017) Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength. Int J Adv Manuf Technol 89(5–8):2175–2191. https://doi.org/10.1007/s00170-016-9257-1

    Article  Google Scholar 

  39. Jayanth N, Senthil P, Prakash C (2018) Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process. Virtual Phys Prototyp 13(3):155–163. https://doi.org/10.1080/17452759.2018.1449565

    Article  Google Scholar 

  40. Jin Y, Wan Y, Liu Z (2017) Surface polish of PLA parts in FDM using dichloromethane vapour. MATEC Web Conf 95. https://doi.org/10.1051/matecconf/20179505001

  41. Jin Y, Wan Y, Zhang B, Liu Z (2017) Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J Mater Process Technol 240:233–239. https://doi.org/10.1016/j.jmatprotec.2016.10.003

    Article  Google Scholar 

  42. Singh R, Singh S, Singh IP (2016) Effect of hot vapor smoothing process on surface hardness of fused deposition modeling parts. 3D Print Addit Manuf 3(2):128–133. https://doi.org/10.1089/3dp.2016.0001

    Article  Google Scholar 

  43. Garg A, Bhattacharya A, Batish A (2017) Effect of cold vapour treatment on geometric accuracy of fused deposition modelling parts. Rapid Prototyp J 23(6):1226–1236. https://doi.org/10.1108/RPJ-05-2016-0072

    Article  Google Scholar 

  44. Colpani A, Fiorentino A, Ceretti E (2019) Characterization of chemical surface finishing with cold acetone vapours on ABS parts fabricated by FDM. Prod Eng. https://doi.org/10.1007/s11740-019-00894-3

  45. Pandey PM, Reddy NV, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 132(1–3):323–331. https://doi.org/10.1016/S0924-0136(02)00953-6

    Article  Google Scholar 

  46. Pandey PM, Reddy NV, Dhande SG (2006) Virtual hybrid-FDM system to enhance surface finish. Virtual Phys Prototyp 1(2):101–116. https://doi.org/10.1080/17452750600763905

    Article  Google Scholar 

  47. Lee WC, Chung SC (2014) Design of a hybrid 5-axis machine tool with fused-deposition-modeling capability. Appl Mech Mater 446–447:566–570. https://doi.org/10.4028/www.scientific.net/AMM.446-447.566

    Article  Google Scholar 

  48. Amanullah ANM, Murshiduzzaman TS, Khan R (2017) Design and development of a hybrid machine combining rapid prototyping and CNC milling operation. Procedia Eng 184:163–170. https://doi.org/10.1016/j.proeng.2017.04.081

    Article  Google Scholar 

  49. Boschetto A, Bottini L, Veniali F (2016) Finishing of fused deposition modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/j.rcim.2016.03.004

    Article  Google Scholar 

  50. Taufik M, Jain PK (2016) CNC-assisted selective melting for improved surface finish of FDM parts. Virtual Phys Prototyp 11(4):319–341. https://doi.org/10.1080/17452759.2016.1245943

    Article  Google Scholar 

  51. Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21(January):1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  Google Scholar 

  52. Moreno Nieto D, Molina SI (2019) Large-format fused deposition additive manufacturing: a review. Rapid Prototyp J 26(5):793–799. https://doi.org/10.1108/RPJ-05-2018-0126

    Article  Google Scholar 

  53. Coronel JL, Fehr KH, Kelly DD, Espalin D, Wicker RB (2017) Increasing component functionality via multi-process additive manufacturing. Micro Nanotechnol Sensors Syst Appl IX 10194(May):101941F. https://doi.org/10.1117/12.2263257

    Article  Google Scholar 

  54. Ambriz S et al (2017) Material handling and registration for an additive manufacturing-based hybrid system. J Manuf Syst 45:17–27. https://doi.org/10.1016/j.jmsy.2017.07.003

    Article  Google Scholar 

  55. Hopmann C, Lammert N (2017) Increasing surface properties by using an integrated screw-based additive and subtractive manufacturing process. In: Annual Technical Conference - ANTEC, Conference Proceedings, vol 2017-May, pp 59–63

    Google Scholar 

  56. Li L, Haghighi A, Yang Y (2018) A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J Manuf Process 33(March):150–160. https://doi.org/10.1016/j.jmapro.2018.05.008

    Article  Google Scholar 

  57. Lambiase F, Genna S, Leone C (2020) Laser finishing of 3D printed parts produced by material extrusion. Opt Lasers Eng 124(May 2019):105801. https://doi.org/10.1016/j.optlaseng.2019.105801

    Article  Google Scholar 

  58. Adel M, Abdelaal O, Gad A, Nasr AB, Khalil AM (2018) Polishing of fused deposition modeling products by hot air jet: evaluation of surface roughness. J Mater Process Technol 251(July 2017):73–82. https://doi.org/10.1016/j.jmatprotec.2017.07.019

    Article  Google Scholar 

  59. Vinitha M, Rao AN, Mallik MK (2012) Optimization of speed parameters in burnishing of samples fabricated by fused deposition modeling. Int J Mech Ind Eng 2(2):10–12

    Google Scholar 

  60. Gajdoš I, Spišák E, Kaščák Ľ, Krasinskyi V (2015) Surface finish techniques for FDM parts. Mater Sci Forum 818(January 2016):45–48. https://doi.org/10.4028/www.scientific.net/MSF.818.45

    Article  Google Scholar 

  61. Kanger C et al Effect of process parameters and shot peening on mechanical behavior of ABS parts manufactured by fused filament fabrication (FFF). In: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, 2017, no. August, pp 444–458

  62. Leong KF, Chua CK, Chua GS, Tan CH (1998) Abrasive jet deburring of jewellery models built by stereolithography apparatus (SLA). J Mater Process Technol 83(1–3):36–47. https://doi.org/10.1016/S0924-0136(98)00041-7

    Article  Google Scholar 

  63. Madireddy G et al (2017) Effect of process parameters and shot peening on the tensile strength and deflection of polymer parts made using mask image projection stereolithography (MIP-SLA). In: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, vol 1, pp 1761–1770

    Google Scholar 

  64. Haidiezul AHM, Aiman AF, Bakar B (2018) Surface finish effects using coating method on 3D printing (FDM) parts. IOP Conf Ser Mater Sci Eng 318(1). https://doi.org/10.1088/1757-899X/318/1/012065

  65. Equbal A, Sood AK (2014) Metallization on FDM parts using the chemical deposition technique. Coatings 4(3):574–586. https://doi.org/10.3390/coatings4030574

    Article  Google Scholar 

  66. Kannan S, Senthilkumaran D (2014) Investigating the influence of electroplating layer thickness on the tensile strength for fused deposition processed abs thermoplastics. Int J Eng Technol 6(2):1047–1052

    Google Scholar 

  67. Yang Q, Lu Z, Zhou J, Miao K, Li D (2017) A novel method for improving surface finish of stereolithography apparatus. Int J Adv Manuf Technol 93(5–8):1537–1544. https://doi.org/10.1007/s00170-017-0529-1

    Article  Google Scholar 

  68. Ahn SH, Lee CS, Jeong W (2004) Development of translucent FDM parts by post-processing. Rapid Prototyp J 10(4):218–224. https://doi.org/10.1108/13552540410551333

    Article  Google Scholar 

  69. Impens D, Urbanic RJ (2016) A comprehensive assessment on the impact of post-processing variables on tensile, compressive and bending characteristics for 3D printed components. Rapid Prototyp J 22(3):591–608. https://doi.org/10.1108/RPJ-02-2015-0018

    Article  Google Scholar 

  70. Jo KH, Jeong YS, Lee JH, Lee SH (2016) A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling. Int J Precis Eng Manuf 17(11):1541–1546. https://doi.org/10.1007/s12541-016-0180-z

    Article  Google Scholar 

  71. Williams RE, Walczyk DF, Dang HT (2007) Using abrasive flow machining to seal and finish conformal channels in laminated tooling. Rapid Prototyp J 13(2):64–75. https://doi.org/10.1108/13552540710736740

    Article  Google Scholar 

  72. Liou FW, Choi J, Landers RG, Janardhan V, Balakrishnan SN, Agarwal S (2001) Research and development of a hybrid rapid manufacturing process. In: Proceedings of the Solid Freeform Fabrication Symposium, pp 138–145

    Google Scholar 

  73. Choi DS et al (2001) Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology. J Mater Process Technol 113(1–3):273–279. https://doi.org/10.1016/S0924-0136(01)00652-5

    Article  Google Scholar 

  74. Song YA, Park S, Chae SW (2005) 3D welding and milling: part ii - optimization of the 3D welding process using an experimental design approach. Int J Mach Tools Manuf 45(9):1063–1069. https://doi.org/10.1016/j.ijmachtools.2004.11.022

    Article  Google Scholar 

  75. Karunakaran KP, Sreenathbabu A, Pushpa V (2004) Hybrid layered manufacturing: direct rapid metal tool-making process. Proc Inst Mech Eng B J Eng Manuf 218(12):1657–1665. https://doi.org/10.1177/095440540421801202

    Article  Google Scholar 

  76. Zhu Z, Dhokia V, Nassehi A, Newman ST (2016) Investigation of part distortions as a result of hybrid manufacturing. Robot Comput Integr Manuf 37:23–32. https://doi.org/10.1016/j.rcim.2015.06.001

    Article  Google Scholar 

  77. Ye ZP, Zhang ZJ, Jin X, Xiao MZ, Su JZ (2017) Study of hybrid additive manufacturing based on pulse laser wire depositing and milling. Int J Adv Manuf Technol 88(5–8):2237–2248. https://doi.org/10.1007/s00170-016-8894-8

    Article  Google Scholar 

  78. Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22(June):672–686. https://doi.org/10.1016/j.addma.2018.06.020

    Article  Google Scholar 

  79. Lorenz KA, Jones JB, Wimpenny DI, Jackson MR (2015) A review of hybrid manufacturing. In: Proceedings - 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2015, vol 53, pp 96–108

    Google Scholar 

  80. Li F, Chen S, Shi J, Tian H (2018) Investigation on surface quality in a hybrid manufacturing system combining wire and arc additive manufacturing and machining. In: Transactions on Intelligent Welding Manufacturing, pp 127–137

  81. Xiong X, Zhang H, Wang G (2009) Metal direct prototyping by using hybrid plasma deposition and milling. J Mater Process Technol 209(1):124–130. https://doi.org/10.1016/j.jmatprotec.2008.01.059

    Article  Google Scholar 

  82. Hill L, Sparks T, Liou F (2017) Development of a hybrid manufacturing process for precision metal parts. In: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, pp 1935–1951

    Google Scholar 

  83. Xiong X, Haiou Z, Guilan W (2008) A new method of direct metal prototyping: hybrid plasma deposition and milling. Rapid Prototyp J 14(1):53–56. https://doi.org/10.1108/13552540810841562

    Article  Google Scholar 

  84. Xiong XH, Quan DM, Chen JL (2014) Directly manufacturing table tennis mould by hybrid plasma deposition & milling. Adv Mater Res 887–888:1219–1222. https://doi.org/10.4028/www.scientific.net/AMR.887-888.1219

    Article  Google Scholar 

  85. Song YA, Park S, Choi D, Jee H (2005) 3D welding and milling: part I-a direct approach for freeform fabrication of metallic prototypes. Int J Mach Tools Manuf 45(9):1057–1062. https://doi.org/10.1016/j.ijmachtools.2004.11.021

    Article  Google Scholar 

  86. Karunakaran KP, Suryakumar S, Pushpa V, Akula S (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf 26(5):490–499. https://doi.org/10.1016/j.rcim.2010.03.008

    Article  Google Scholar 

  87. Li P, Gong Y, Liang C, Yang Y, Cai M (2019) Effect of post-heat treatment on residual stress and tensile strength of hybrid additive and subtractive manufacturing. Int J Adv Manuf Technol 103(5–8):2579–2592. https://doi.org/10.1007/s00170-019-03705-2

    Article  Google Scholar 

  88. Hansel A et al (2016) Study on consistently optimum deposition conditions of typical metal material using additive/subtractive hybrid machine tool. Procedia CIRP 46:579–582. https://doi.org/10.1016/j.procir.2016.04.113

    Article  Google Scholar 

  89. Oyelola O, Crawforth P, M’Saoubi R, Clare AT (2018) On the machinability of directed energy deposited Ti6Al4V. Addit Manuf 19:39–50. https://doi.org/10.1016/j.addma.2017.11.005

    Article  Google Scholar 

  90. Zhang P, Liu Z, Du J, Su G, Zhang J, Xu C (2020) On machinability and surface integrity in subsequent machining of additively-manufactured thick coatings: a review. J Manuf Process 53(January):123–143. https://doi.org/10.1016/j.jmapro.2020.02.013

    Article  Google Scholar 

  91. Mognol P, Jégou L, Rivette M, Furet B (2006) High speed milling, electro discharge machining and direct metal laser sintering: a method to optimize these processes in hybrid rapid tooling. Int J Adv Manuf Technol 29(1–2):35–40. https://doi.org/10.1007/s00170-005-2502-7

    Article  Google Scholar 

  92. Jeng JY, Lin MC (2001) Mold fabrication and modification using hybrid processes of selective laser cladding and milling. J Mater Process Technol 110(1):98–103. https://doi.org/10.1016/S0924-0136(00)00850-5

    Article  Google Scholar 

  93. Jones J, McNutt P, Tosi R, Perry C, Wimpenny D (2012) Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine. In: 23rd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2012, pp 821–827

    Google Scholar 

  94. Xu Z, Ouyang W, Jia S, Jiao J, Zhang M, Zhang W (2020) Cracks repairing by using laser additive and subtractive hybrid manufacturing technology. J Manuf Sci Eng Trans ASME 142(3). https://doi.org/10.1115/1.4046161

  95. Oyelola O, Crawforth P, M’Saoubi R, Clare AT (2016) Machining of additively manufactured parts: implications for surface integrity. Procedia CIRP 45:119–122. https://doi.org/10.1016/j.procir.2016.02.066

    Article  Google Scholar 

  96. Li Y, Rapthadu R (2017) Bending-additive-machining hybrid manufacturing of sheet metal structures. In: ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017, vol 1, pp 1–9. https://doi.org/10.1115/MSEC20173062

    Chapter  Google Scholar 

  97. Zhang S, Zhang Y, Gao M, Wang F, Li Q, Zeng X (2019) Effects of milling thickness on wire deposition accuracy of hybrid additive/subtractive manufacturing. Sci Technol Weld Join 24(5):375–381. https://doi.org/10.1080/13621718.2019.1595925

    Article  Google Scholar 

  98. Xie Y, Zhang H, Zhou F (2016) Improvement in geometrical accuracy and mechanical property for arc-based additive manufacturing using metamorphic rolling mechanism. J Manuf Sci Eng Trans ASME 138(11):1–8. https://doi.org/10.1115/1.4032079

    Article  Google Scholar 

  99. Zhang HO, Rui W, Liye L, Wang GL (2016) HDMR technology for the aircraft metal part. Rapid Prototyp J 22(6):857–863. https://doi.org/10.1108/RPJ-05-2015-0047

    Article  Google Scholar 

  100. Zhang H et al (2017) Casting - forging - milling composite additive manufacturing thechnology. In: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, pp 1989–2004

    Google Scholar 

  101. Colegrove PA, Donoghue J, Martina F, Gu J, Prangnell P, Hönnige J (2017) Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scr Mater 135:111–118. https://doi.org/10.1016/j.scriptamat.2016.10.031

    Article  Google Scholar 

  102. McAndrew AR et al (2018) Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement. Addit Manuf 21(March):340–349. https://doi.org/10.1016/j.addma.2018.03.006

    Article  Google Scholar 

  103. Martina F et al (2016) Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti–6Al–4V components. Mater Sci Technol (U K) 32(14):1439–1448. https://doi.org/10.1080/02670836.2016.1142704

    Article  Google Scholar 

  104. Donoghue J, Antonysamy AA, Martina F, Colegrove PA, Williams SW, Prangnell PB (2016) The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4 V. Mater Charact 114:103–114. https://doi.org/10.1016/j.matchar.2016.02.001

    Article  Google Scholar 

  105. Zhang H, Wang X, Wang G, Zhang Y (2013) Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling. Rapid Prototyp J 19(6):387–394. https://doi.org/10.1108/RPJ-01-2012-0006

    Article  Google Scholar 

  106. Colegrove PA et al (2013) Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol 213(10):1782–1791. https://doi.org/10.1016/j.jmatprotec.2013.04.012

    Article  Google Scholar 

  107. Book TA, Sangid MD (2016) Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process. Jom 68(7):1780–1792. https://doi.org/10.1007/s11837-016-1897-y

    Article  Google Scholar 

  108. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 65:934–952. https://doi.org/10.1016/j.matdes.2014.09.082

    Article  Google Scholar 

  109. Francis R, Newkirk J, Liou F (2016) Investigation of forged-like microstructure produced by a hybrid manufacturing process. Rapid Prototyp J 22(4):717–726. https://doi.org/10.1108/RPJ-03-2015-0038

    Article  Google Scholar 

  110. Salvati E et al (2017) Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel superalloy compressor blade. Comput Methods Appl Mech Eng 320:335–351. https://doi.org/10.1016/j.cma.2017.03.005

    Article  Google Scholar 

  111. AlMangour B, Yang JM (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924. https://doi.org/10.1016/j.matdes.2016.08.037

    Article  Google Scholar 

  112. Guo W et al (2018) Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surf Coat Technol 349(February):503–510. https://doi.org/10.1016/j.surfcoat.2018.06.020

    Article  Google Scholar 

  113. Sun R et al (2018) Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J Alloys Compd 747:255–265. https://doi.org/10.1016/j.jallcom.2018.02.353

    Article  Google Scholar 

  114. Luo S, He W, Chen K, Nie X, Zhou L, Li Y (2018) Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening. J Alloys Compd 750:626–635. https://doi.org/10.1016/j.jallcom.2018.04.029

    Article  Google Scholar 

  115. Sealy MP, Madireddy G, Li C, Guo YB (2016) Finite element modeling of hybrid additive manufacturing by laser shock peening. In: Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, pp 306–316

    Google Scholar 

  116. Kalentics N et al (2017) 3D laser shock peening – a new method for the 3D control of residual stresses in selective laser melting. Mater Des 130(April):350–356. https://doi.org/10.1016/j.matdes.2017.05.083

    Article  Google Scholar 

  117. Kalentics N, Boillat E, Peyre P, Ćirić-Kostić S, Bogojević N, Logé RE (2017) Tailoring residual stress profile of selective laser melted parts by laser shock peening. Addit Manuf 16:90–97. https://doi.org/10.1016/j.addma.2017.05.008

    Article  Google Scholar 

  118. Kalentics N, Huang K, de Seijas MOV, Burn A, Romano V, Logé RE (2019) Laser shock peening: a promising tool for tailoring metallic microstructures in selective laser melting. J Mater Process Technol 266(July 2018):612–618. https://doi.org/10.1016/j.jmatprotec.2018.11.024

    Article  Google Scholar 

  119. Gale J, Achuhan A (2017) Application of ultrasonic peening during DMLS production of 316L stainless steel and its effect on material behavior. Rapid Prototyp J 23(6):1185–1194. https://doi.org/10.1108/RPJ-09-2016-0140

    Article  Google Scholar 

  120. Xing X, Duan X, Jiang T, Wang J, Jiang F (2019) Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting. Metals (Basel) 9(1). https://doi.org/10.3390/met9010103

  121. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  122. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int Mater Rev 57(3):133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  123. Mizukami Y, Osakada K (2002) Three-dimensional fabrication of metallic parts and molds using hybrid process of powder layer compaction and milling. In: International Solid Freeform Fabrication Symposium, pp 474–481

    Google Scholar 

  124. Mizukami Y, Osakada K (2005) Fabrication of cemented carbide molds with internal cooling channels using hybrid process of powder layer compaction and milling. Mater Trans 46(11):2497–2503. https://doi.org/10.2320/matertrans.46.2497

    Article  Google Scholar 

  125. Brown D, Li C, Liu ZY, Fang XY, Guo YB (2018) Surface integrity of Inconel 718 by hybrid selective laser melting and milling. Virtual Phys Prototyp 13(1):26–31. https://doi.org/10.1080/17452759.2017.1392681

    Article  Google Scholar 

  126. Milton S, Morandeau A, Chalon F, Leroy R (2016) Influence of finish machining on the surface integrity of Ti6Al4V produced by selective laser melting. Procedia CIRP 45:127–130. https://doi.org/10.1016/j.procir.2016.02.340

    Article  Google Scholar 

  127. Du W, Bai Q, Zhang B (2016) A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manuf 5:1018–1030. https://doi.org/10.1016/j.promfg.2016.08.067

    Article  Google Scholar 

  128. Du W, Bai Q, Zhang B (2018) Machining characteristics of 18Ni-300 steel in additive/subtractive hybrid manufacturing. Int J Adv Manuf Technol 95(5–8):2509–2519. https://doi.org/10.1007/s00170-017-1364-0

    Article  Google Scholar 

  129. Wüst P, Edelmann A, Hellmann R (2020) Areal surface roughness optimization of maraging steel parts produced by hybrid additive manufacturing. Materials (Basel) 13(2). https://doi.org/10.3390/ma13020418

  130. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17(5):312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  131. Bhaduri D et al (2017) Laser polishing of 3D printed mesoscale components. Appl Surf Sci 405:29–46. https://doi.org/10.1016/j.apsusc.2017.01.211

    Article  Google Scholar 

  132. Lamikiz A, Sánchez JA, López de Lacalle LN, Arana JL (2007) Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf 47(12–13):2040–2050. https://doi.org/10.1016/j.ijmachtools.2007.01.013

    Article  Google Scholar 

  133. Marimuthu S, Triantaphyllou A, Antar M, Wimpenny D, Morton H, Beard M (2015) Laser polishing of selective laser melted components. Int J Mach Tools Manuf 95:97–104. https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  134. Tian Y et al (2018) Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components. Addit Manuf 20:11–22. https://doi.org/10.1016/j.addma.2017.12.010

    Article  Google Scholar 

  135. Qian YP, Huang JH, Zhang HO, Wang GL (2008) Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology. J Mater Process Technol 208(1–3):99–104. https://doi.org/10.1016/j.jmatprotec.2007.12.116

    Article  Google Scholar 

  136. Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann - Manuf Technol 53(1):195–198. https://doi.org/10.1016/S0007-8506(07)60677-5

    Article  Google Scholar 

  137. Ma CP, Guan YC, Zhou W (2017) Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 93(October 2016):171–177. https://doi.org/10.1016/j.optlaseng.2017.02.005

    Article  Google Scholar 

  138. Yasa E, Kruth JP, Deckers J (2011) Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann - Manuf Technol 60(1):263–266. https://doi.org/10.1016/j.cirp.2011.03.063

    Article  Google Scholar 

  139. Yasa E, Kruth JP (2010) Investigation of laser and process parameters for selective laser erosion. Precis Eng 34(1):101–112. https://doi.org/10.1016/j.precisioneng.2009.04.001

    Article  Google Scholar 

  140. Sedao X, Lenci M, Rudenko A, Pascale-Hamri A, Colombier JP, Mauclair C (2018) Additive and substractive surface structuring by femtosecond laser induced material ejection and redistribution. Materials (Basel) 11(12). https://doi.org/10.3390/ma11122456

  141. Qiu C, Adkins NJE, Attallah MM (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mater Sci Eng A 578:230–239. https://doi.org/10.1016/j.msea.2013.04.099

    Article  Google Scholar 

  142. Dadbakhsh S, Hao L (2012) Effect of hot isostatic pressing (HIP) on Al composite parts made from laser consolidated Al/Fe 2O 3 powder mixtures. J Mater Process Technol 212(11):2474–2483. https://doi.org/10.1016/j.jmatprotec.2012.06.016

    Article  Google Scholar 

  143. Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Niendorf T (2015) Functional encapsulation of laser melted Inconel 718 by Arc-PVD and HVOF for post compacting by hot isostatic pressing. Powder Metall 58(4):259–264. https://doi.org/10.1179/0032589915Z.000000000250

    Article  Google Scholar 

  144. Hassanin H, Essa K, Qiu C, Abdelhafeez AM, Adkins NJE, Attallah MM (2017) Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyp J 23(4):720–726. https://doi.org/10.1108/RPJ-02-2016-0019

    Article  Google Scholar 

  145. Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Hoyer KP (2017) Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit Manuf 13:93–102. https://doi.org/10.1016/j.addma.2016.11.006

    Article  Google Scholar 

  146. Ambrogio G, Gagliardi F, Muzzupappa M, Filice L (2019) Additive-incremental forming hybrid manufacturing technique to improve customised part performance. J Manuf Process 37(March 2018):386–391. https://doi.org/10.1016/j.jmapro.2018.12.008

    Article  Google Scholar 

  147. Jain S, Corliss M, Tai B, Hung WN (2019) Electrochemical polishing of selective laser melted Inconel 718. Procedia Manuf 34:239–246. https://doi.org/10.1016/j.promfg.2019.06.145

    Article  Google Scholar 

  148. Hassanin H, Elshaer A, Benhadj-Djilali R, Modica F, Fassi I (2018) Surface finish improvement of additive manufactured metal parts. In: Micro and Precision Manufacturing, Engineering Materials, pp 145–164

    Chapter  Google Scholar 

  149. Fritz AH, Günter S (2008) Fertigungstechnik. Springer, Berlin Heidelberg

    Book  Google Scholar 

  150. Huang Z, Dantan JY, Etienne A, Rivette M, Bonnet N (2018) Geometrical deviation identification and prediction method for additive manufacturing. Rapid Prototyp J 24(9):1524–1538. https://doi.org/10.1108/RPJ-07-2017-0137

    Article  Google Scholar 

  151. Le VT, Paris H, Mandil G (2017) Environmental impact assessment of an innovative strategy based on an additive and subtractive manufacturing combination. J Clean Prod 164:508–523. https://doi.org/10.1016/j.jclepro.2017.06.204

    Article  Google Scholar 

  152. Wippermann A, Gutowski TG, Denkena B, Dittrich MA, Wessarges Y (2020) Electrical energy and material efficiency analysis of machining, additive and hybrid manufacturing. J Clean Prod 251:119731. https://doi.org/10.1016/j.jclepro.2019.119731

    Article  Google Scholar 

  153. Campatelli G, Montevecchi F, Venturini G, Ingarao G, Priarone PC (2020) Integrated WAAM-subtractive versus pure subtractive manufacturing approaches: an energy efficiency comparison. Int J Precis Eng Manuf Green Technol 7(1):1–11. https://doi.org/10.1007/s40684-019-00071-y

    Article  Google Scholar 

  154. Popov VV, Fleisher A (2020) Hybrid additive manufacturing of steels and alloys. Manuf Rev 7:6. https://doi.org/10.1051/mfreview/2020005

    Article  Google Scholar 

  155. Strong D, Sirichakwal I, Manogharan GP, Wakefield T (2017) Current state and potential of additive - hybrid manufacturing for metal parts. Rapid Prototyp J 23(3):577–588. https://doi.org/10.1108/RPJ-04-2016-0065

    Article  Google Scholar 

  156. Dai C, Wang CCL, Wu C, Lefebvre S, Fang G, Liu YJ (2018) Support-free volume printing by multi-axis motion. ACM Trans Graph 37(4). https://doi.org/10.1145/3197517.3201342

  157. Shen H, Diao H, Yue S, Fu J (2018) Fused deposition modeling five-axis additive manufacturing: machine design, fundamental printing methods and critical process characteristics. Rapid Prototyp J 24(3):548–561. https://doi.org/10.1108/RPJ-05-2017-0096

    Article  Google Scholar 

  158. Liou F, Slattery K, Kinsella M, Newkirk J, Chou HN, Landers R (2007) Applications of a hybrid manufacturing process for fabrication of metallic structures. Rapid Prototyp J 13(4):236–244. https://doi.org/10.1108/13552540710776188

    Article  Google Scholar 

  159. Eldakroury MA, Chen N, Frank MC (2018) A new method for locating candidate substrates for multi axis hybrid manufacturing systems. Rapid Prototyp J 24(2):237–248. https://doi.org/10.1108/RPJ-12-2016-0213

    Article  Google Scholar 

  160. Xu J, Gu X, Ding D, Pan Z, Chen K (2018) A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyp J 24(6):1012–1025. https://doi.org/10.1108/RPJ-10-2017-0196

    Article  Google Scholar 

  161. Ruan J, Eiamsa-Ard K, Liou FW (2005) Automatic process planning and toolpath generation of a multiaxis hybrid manufacturing system. J Manuf Process 7(1):57–68. https://doi.org/10.1016/S1526-6125(05)70082-7

    Article  Google Scholar 

  162. Taylor JB, Cormier DR, Joshi S, Venkataraman V (2001) Contoured edge slice generation in rapid prototyping via 5-axis machining. Robot Comput Integr Manuf 17(1–2):13–18. https://doi.org/10.1016/S0736-5845(00)00032-6

    Article  Google Scholar 

  163. Hu Z, Lee K (2005) Concave edge-based part decomposition for hybrid rapid prototyping. Int J Mach Tools Manuf 45(1):35–42. https://doi.org/10.1016/j.ijmachtools.2004.06.015

    Article  Google Scholar 

  164. Hur J, Lee K, Zhu-Hu, Kim J (2002) Hybrid rapid prototyping system using machining and deposition. CAD Comput Aided Des 34(10):741–754. https://doi.org/10.1016/S0010-4485(01)00203-2

    Article  Google Scholar 

  165. Zhu Z, Dhokia V, Newman ST (2012) A novel process planning approach for hybrid manufacturing consisting of additive, subtractive and inspection processes. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp 1617–1621. https://doi.org/10.1109/IEEM.2012.6838020

    Chapter  Google Scholar 

  166. Zhu Z, Dhokia V, Newman ST, Nassehi A (2014) Application of a hybrid process for high precision manufacture of difficult to machine prismatic parts. Int J Adv Manuf Technol 74(5–8):1115–1132. https://doi.org/10.1007/s00170-014-6053-7

    Article  Google Scholar 

  167. Zhang J, Liou F (2013) Multi-axis planinng of a hybrid material deposition and removal combined process. J Mach Manuf Autom 2(3):46–57

    Google Scholar 

  168. Le VT, Paris H, Mandil G (2018) Extracting features for manufacture of parts from existing components based on combining additive and subtractive technologies. Int J Interact Des Manuf 12(2):525–536. https://doi.org/10.1007/s12008-017-0395-y

    Article  Google Scholar 

  169. Ren L, Sparks T, Ruan J, Liou F (2010) Integrated process planning for a multiaxis hybrid manufacturing system. J Manuf Sci Eng Trans ASME 132(2):0210061–0210067. https://doi.org/10.1115/1.4001122

    Article  Google Scholar 

  170. Zhu Z, Dhokia V, Newman ST (2013) The development of a novel process planning algorithm for an unconstrained hybrid manufacturing process. J Manuf Process 15(4):404–413. https://doi.org/10.1016/j.jmapro.2013.06.006

    Article  Google Scholar 

  171. Le VT, Paris H, Mandil G (2017) Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J Manuf Syst 44:243–254. https://doi.org/10.1016/j.jmsy.2017.06.003

    Article  Google Scholar 

  172. Hao J, Chen X, Liu H, Ye S (2018) A novel process planning algorithm for additive and subtractive manufacturing based on skeleton tree matching. Rapid Prototyp J 24(2):441–462. https://doi.org/10.1108/RPJ-11-2016-0179

    Article  Google Scholar 

  173. Newman ST, Zhu Z, Dhokia V, Shokrani A (2015) Process planning for additive and subtractive manufacturing technologies. CIRP Ann - Manuf Technol 64(1):467–470. https://doi.org/10.1016/j.cirp.2015.04.109

    Article  Google Scholar 

  174. Kulkarni P, Dutta D (2000) On the integration of layered manufacturing and material removal processes. J Manuf Sci Eng Trans ASME 122(1):100–108. https://doi.org/10.1115/1.538891

    Article  Google Scholar 

  175. Hu Z, Lee K, Hur J (2002) Determination of optimal build orientation for hybrid rapid-prototyping. J Mater Process Technol 130–131:378–383. https://doi.org/10.1016/S0924-0136(02)00727-6

    Article  Google Scholar 

  176. Zhu Z, Dhokia V, Nassehi A, Newman ST (2013) A methodology for the estimation of build time for operation sequencing in process planning for a hybrid process. In: Advances in Sustainable and Competitive Manufacturing Systems, pp 159–171

    Chapter  Google Scholar 

  177. Zhu Z, Dhokia V, Newman ST (2017) A novel decision-making logic for hybrid manufacture of prismatic components based on existing parts. J Intell Manuf 28(1):131–148. https://doi.org/10.1007/s10845-014-0966-8

    Article  Google Scholar 

  178. Basinger KL, Keough CB, Webster CE, Wysk RA, Martin TM, Harrysson OL (2018) Development of a modular computer-aided process planning (CAPP) system for additive-subtractive hybrid manufacturing of pockets, holes, and flat surfaces. Int J Adv Manuf Technol 96(5–8):2407–2420. https://doi.org/10.1007/s00170-018-1674-x

    Article  Google Scholar 

  179. Zhang J, Liou F (2004) Adaptive slicing for a multi-axis laser aided manufacturing process. J Mech Des Trans ASME 126(2):254–261. https://doi.org/10.1115/1.1649966

    Article  Google Scholar 

  180. Zhang J, Ruan J, Liou F (2013) A process planning strategy for multi-axis hybrid manufacturing process. Int J Rapid Manuf 3(2/3):130. https://doi.org/10.1504/ijrapidm.2013.053685

    Article  Google Scholar 

  181. Francis J, Sparks TE, Ruan J, Liou F (2014) Multi-axis tool path generation for surface finish machining of a rapid manufacturing process. Int J Rapid Manuf 4(1):66. https://doi.org/10.1504/ijrapidm.2014.062040

    Article  Google Scholar 

  182. Chen N, Barnawal P, Frank MC (2018) Automated post machining process planning for a new hybrid manufacturing method of additive manufacturing and rapid machining. Rapid Prototyp J 24(7):1077–1090. https://doi.org/10.1108/RPJ-04-2017-0057

    Article  Google Scholar 

  183. Urbanic RJ, Hedrick RW, Saquib S, Nazemi N (2018) Material bead deposition with 2 + 2 ½ multi-axis machining process planning strategies with virtual verification for extruded geometry. Int J Adv Manuf Technol 95(9–12):3167–3184. https://doi.org/10.1007/s00170-017-1376-9

    Article  Google Scholar 

  184. Chen N, Frank M (2019) Process planning for hybrid additive and subtractive manufacturing to integrate machining and directed energy deposition. Procedia Manuf 34:205–213. https://doi.org/10.1016/j.promfg.2019.06.140

    Article  Google Scholar 

  185. Urbanic RJ, Hedrick RW, Burford CG (2017) A process planning framework and virtual representation for bead-based additive manufacturing processes. Int J Adv Manuf Technol 90(1–4):361–376. https://doi.org/10.1007/s00170-016-9392-8

    Article  Google Scholar 

  186. Praniewicz M, Kurfess T, Saldana C (2019) An adaptive geometry transformation and repair method for hybrid manufacturing. J Manuf Sci Eng Trans ASME 141(January):011006–1/8. https://doi.org/10.1115/1.4041570

    Article  Google Scholar 

  187. Abdulhameed O, Al-Ahmari AM, Ameen W, Mian SH (2018) Novel dynamic CAPP system for hybrid additive–subtractive–inspection process. Rapid Prototyp J 24(6):988–1002. https://doi.org/10.1108/RPJ-11-2017-0239

    Article  Google Scholar 

  188. Behandish M, Nelaturi S, de Kleer J (2018) Automated process planning for hybrid manufacturing. CAD Comput Aided Des 102:115–127. https://doi.org/10.1016/j.cad.2018.04.022

    Article  Google Scholar 

  189. Chen L, Xu K, Tang K (2018) Optimized sequence planning for multi-axis hybrid machining of complex geometries. Comput Graph 70:176–187. https://doi.org/10.1016/j.cag.2017.07.018

    Article  Google Scholar 

  190. Le VT, Paris H, Mandil G (2018) The development of a strategy for direct part reuse using additive and subtractive manufacturing technologies. Addit Manuf 22(July):687–699. https://doi.org/10.1016/j.addma.2018.06.026

    Article  Google Scholar 

  191. ElMaraghy H, Moussa M (2019) Optimal platform design and process plan for managing variety using hybrid manufacturing. CIRP Ann 68(1):443–446. https://doi.org/10.1016/j.cirp.2019.03.025

    Article  Google Scholar 

  192. Liu C, Li Y, Jiang S, Li Z, Xu K (2020) A sequence planning method for five-axis hybrid manufacturing of complex structural parts. Proc Inst Mech Eng B J Eng Manuf 234(3):421–430. https://doi.org/10.1177/0954405419883052

    Article  Google Scholar 

  193. Chen L, Lau TY, Tang K (2020) Manufacturability analysis and process planning for additive and subtractive hybrid manufacturing of Quasi-rotational parts with columnar features. CAD Comput Aided Des 118:102759. https://doi.org/10.1016/j.cad.2019.102759

    Article  Google Scholar 

  194. Gleadall A et al (2016) A decision support methodology for embodiment design and process chain selection for hybrid manufacturing platforms. Int J Adv Manuf Technol 87(1–4):553–569. https://doi.org/10.1007/s00170-016-8514-7

    Article  Google Scholar 

  195. Kerbrat O, Mognol P, Hascoët JY (2011) A new DFM approach to combine machining and additive manufacturing. Comput Ind 62(7):684–692. https://doi.org/10.1016/j.compind.2011.04.003

    Article  Google Scholar 

  196. Kerbrat O, Mognol P, Hascoet JY (2010) Manufacturing complexity evaluation at the design stage for both machining and layered manufacturing. CIRP J Manuf Sci Technol 2(3):208–215. https://doi.org/10.1016/j.cirpj.2010.03.007

    Article  Google Scholar 

  197. Kerbrat O, Mognol P, Hascoet JY (2010) Manufacturability analysis to combine additive and subtractive processes. Rapid Prototyp J 16(1):63–72. https://doi.org/10.1108/13552541011011721

    Article  Google Scholar 

  198. Joshi A, Anand S (2017) Geometric complexity based process selection for hybrid manufacturing. Procedia Manuf 10(513):578–589. https://doi.org/10.1016/j.promfg.2017.07.056

    Article  Google Scholar 

  199. Chu WS et al (2016) From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: a review and perspective of paradigm shift. Int J Precis Eng Manuf Green Technol 3(2):209–222. https://doi.org/10.1007/s40684-016-0028-0

    Article  Google Scholar 

  200. Liu J, A. C. To (2017) Topology optimization for hybrid additive-subtractive manufacturing. Struct Multidiscip Optim 55(4):1281–1299. https://doi.org/10.1007/s00158-016-1565-4

    Article  MathSciNet  Google Scholar 

  201. Essink WP, Flynn JM, Goguelin S, Dhokia V (2017) Hybrid ants: a new approach for geometry creation for additive and hybrid manufacturing. Procedia CIRP 60:199–204. https://doi.org/10.1016/j.procir.2017.01.022

    Article  Google Scholar 

  202. Liu J, Zheng Y, Ma Y, Qureshi A, Ahmad R (2020) A topology optimization method for hybrid subtractive–additive remanufacturing. Int J Precis Eng Manuf Green Technol 7(5):939–953. https://doi.org/10.1007/s40684-019-00075-8

    Article  Google Scholar 

  203. Han YS, Xu B, Zhao L, Xie YM (2019) Topology optimization of continuum structures under hybrid additive-subtractive manufacturing constraints. Struct Multidiscip Optim 60(6):2571–2595. https://doi.org/10.1007/s00158-019-02334-3

    Article  Google Scholar 

  204. Priarone PC, Ingarao G (2017) Towards criteria for sustainable process selection: on the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. J Clean Prod 144:57–68. https://doi.org/10.1016/j.jclepro.2016.12.165

    Article  Google Scholar 

  205. Liu R, Wang Z, Sparks T, Liou F, Newkirk J (2017) Aerospace applications of laser additive manufacturing. In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Elsevier Ltd, pp 351–371

  206. Soshi M, Ring J, Young C, Oda Y, Mori M (2017) Innovative grid molding and cooling using an additive and subtractive hybrid CNC machine tool. CIRP Ann - Manuf Technol 66(1):401–404. https://doi.org/10.1016/j.cirp.2017.04.093

    Article  Google Scholar 

  207. Hollister S, Bergman T (2004) Biomedical applications of integrated additive/subtractive manufacturing. In: Additive/Subtractive Manufacturing Research and Development in Europe 1001, pp 55–62

    Google Scholar 

  208. Giannitelli SM, Mozetic P, Trombetta M, Rainer A (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24:1–11. https://doi.org/10.1016/j.actbio.2015.06.032

    Article  Google Scholar 

  209. Gao J, Chen X, Yilmaz O, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11–12):1170–1179. https://doi.org/10.1007/s00170-006-0923-6

    Article  Google Scholar 

  210. Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178. https://doi.org/10.1016/j.jclepro.2014.05.084

    Article  Google Scholar 

  211. Zhang X, Li W, Cui W, Liou F (2018) Modeling of worn surface geometry for engine blade repair using laser-aided direct metal deposition process. Manuf Lett 15:1–4. https://doi.org/10.1016/j.mfglet.2017.11.001

    Article  Google Scholar 

  212. Kaierle S et al (2017) Single-crystal turbine blade tip repair by laser cladding and remelting. CIRP J Manuf Sci Technol 19:196–199. https://doi.org/10.1016/j.cirpj.2017.04.001

    Article  Google Scholar 

  213. Pattison J, Celotto S, Morgan R, Bray M, O’Neill W (2007) Cold gas dynamic manufacturing: a non-thermal approach to freeform fabrication. Int J Mach Tools Manuf 47(3–4):627–634. https://doi.org/10.1016/j.ijmachtools.2006.05.001

    Article  Google Scholar 

  214. Sova A, Grigoriev S, Okunkova A, Smurov I (2013) Potential of cold gas dynamic spray as additive manufacturing technology. Int J Adv Manuf Technol 69(9–12):2269–2278. https://doi.org/10.1007/s00170-013-5166-8

    Article  Google Scholar 

  215. Yin S et al (2019) Hybrid additive manufacture of 316 L stainless steel with cold spray and selective laser melting: microstructure and mechanical properties. J Mater Process Technol 273(January):116248. https://doi.org/10.1016/j.jmatprotec.2019.05.029

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their helpful comments/suggestions that contributed to improve the quality of the paper.

Funding

This work is supported in part by the Scientific and Technological Research Council of Turkey under the project contract 117M429.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed equally to this work.

Corresponding author

Correspondence to Ulas Yaman.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors consent to the publication of the manuscript in this journal.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilberoglu, U.M., Gharehpapagh, B., Yaman, U. et al. Current trends and research opportunities in hybrid additive manufacturing. Int J Adv Manuf Technol 113, 623–648 (2021). https://doi.org/10.1007/s00170-021-06688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06688-1

Keywords

Navigation