Skip to main content

Advertisement

Log in

Multi–regime models for nonlinear nonstationary time series

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Nonlinear nonstationary models for time series are considered, where the series is generated from an autoregressive equation whose coefficients change both according to time and the delayed values of the series itself, switching between several regimes. The transition from one regime to the next one may be discontinuous (self-exciting threshold model), smooth (smooth transition model) or continuous linear (piecewise linear threshold model). A genetic algorithm for identifying and estimating such models is proposed, and its behavior is evaluated through a simulation study and application to temperature data and a financial index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alander JT (1992) On optimal population size of genetic algorithms. In: Proceedings of CompEuro92. IEEE Computer Society Press, pp 65–70

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the greater alpine region. Int J Climatol 27: 17–46

    Article  Google Scholar 

  • Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66: 47–78

    Article  MathSciNet  MATH  Google Scholar 

  • Baragona R, Battaglia F, Cucina D (2004) Fitting piecewise linear threshold autoregressive models by means of genetic algorithms. Comput Stat Data Anal 47: 277–295

    Article  MathSciNet  MATH  Google Scholar 

  • Baragona R, Battaglia F (2006) Genetic algorithms for building double threshold generalized autoregressive conditional heteroscedastic models of time series. In: Rizzi A, Vichi M (eds) COMPSTAT 2006 Proceedings in Computational Statistics. Physica-Verlag, Heidelberg, pp 441–452

  • Baragona R, Battaglia F, Poli I (2011) Evolutionary statistical procedures. Springer, Berlin

    Book  MATH  Google Scholar 

  • Battaglia F, Protopapas MK (2011) Time-varying multi-regime models fitting by genetic algorithms. J Time Ser Anal 32: 237–252

    Article  MathSciNet  Google Scholar 

  • Bhansali RJ, Downham DY (1977) Some properties of the order of an autoregressive model selected by a generalization of Akaike’s EPF criterion. Biometrika 64: 547–551

    MathSciNet  MATH  Google Scholar 

  • Böhm R, Jones PD, Hiebl J, Frank D, Brunetti M, Maugeri M (2010) The early instrumental warm-bias: a solution for long Central European temperature series 1760–2007. Climatic Change 101: 41–67

    Article  Google Scholar 

  • Carrasco M (2002) Misspecified structural change, thresholds and Markov-Switching models. J Econom 109: 239–273

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee S, Laudato M, Lynch LA (1996) Genetic algorithms and their statistical applications: an introduction. Comput Stat Data Anal 22: 633–651

    Article  MATH  Google Scholar 

  • Cai Z, Fan J, Yao Q (2000) Functional coefficient regression models for nonlinear time series. J Am Stat Assoc 95: 941–955

    MathSciNet  MATH  Google Scholar 

  • Chen R, Tsay R (1993) Functional Coefficient Autoregressive Models. J Am Stat Assoc 88: 298–308

    Article  MathSciNet  MATH  Google Scholar 

  • Clark TE, West KD (2006) Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis. J Econom 135: 155–186

    Article  MathSciNet  Google Scholar 

  • Crawford KD, Wainwright RL (1995) Applying genetic algorithms to outlier detection. In: Eshelman LJ (ed) Proceedings of the sixth international conference on genetic algorithms. Morgan Kaufmann, San Mateo, CA, pp 546–550

  • Davis R, Lee T, Rodriguez-Yam G (2006) Structural break estimation for nonstationary time series models. J Am Stat Assoc 101: 223–239

    Article  MathSciNet  MATH  Google Scholar 

  • Dueker MJ, Sola M, Spagnolo F (2007) Contemporaneous threshold autoregressive models: estimation, testing and forecasting. J Econom 141: 517–547

    Article  MathSciNet  Google Scholar 

  • Dupleich Ulloa MR (2006) Testing for breaks and threshold effects: a non-nested approach. Technical Report, University of Cambridge. http://www.eea-esem.com/files/papers/EEA-ESEM/2006/1197/VerJuly05.pdf. Accessed 16 February 2011

  • Gaetan C (2000) Subset ARMA model identification using genetic algorithms. J Time Ser Anal 21: 559–570

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Guerrero VM (1993) Time series analysis supported by power transformations. J Forecast 12: 37–48

    Article  Google Scholar 

  • Hamilton J (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57: 357–384

    Article  MathSciNet  MATH  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J Roy Stat Soc Ser B 41: 190–195

    MathSciNet  MATH  Google Scholar 

  • Hartmann D, Kempa B, Pierdzioch C (2008) Economic and financial crises and the predictability of U.S. stock returns. J Empir Finance 15: 468–480

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Kamgaing JT, Ombao H, Davis RA (2009) Autoregressive processes with data-driven regime switching. J Time Ser Anal 30: 505–533

    Article  MATH  Google Scholar 

  • Keenan DM (1985) A Tukey nonadditivity-type test for time series nonlinearity. Biometrika 72: 39–44

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufman, San Mateo

    Google Scholar 

  • Kim D, Kon SJ (1999) Structural change and time dependence in models of stock returns. J Empir Finance 6: 283–308

    Article  Google Scholar 

  • Koop G, Potter S (2001) Are apparent finding of nonlinearity due to structural instability in economic time series?. Econom J 4: 37–55

    Article  MATH  Google Scholar 

  • Lin C, Teräsvirta T (1994) Testing the constancy of regression parameters against continuous structural change. J Econom 62: 211–228

    Article  MATH  Google Scholar 

  • Liu L, Hudak GB (1992) Forecasting and time series analysis using the SCA statistical system. Scientific Computing Associates, Oak Brook

    Google Scholar 

  • Lundberg S, Teräsvirta T, van Dijk D (2003) Time-varying smooth transition autoregressive models. J Bus Econ Stat 21: 104–121

    Article  Google Scholar 

  • Lu YK, Perron P (2010) Modeling and forecasting stock return volatility using a random level shift model. J Empir Finance 17: 138–156

    Article  Google Scholar 

  • Perron P (2006) Dealing with structural breaks. In: Patterson K, Mills TC (eds) Palgrave handbook of econometrics, vol 1: econometric theory. Palgrave Macmillan, Basingstoke, pp 278–352

    Google Scholar 

  • Pesaran MH, Timmermann A (2002) Market timing and return prediction under model instability. J Empir Finance 9: 495–510

    Article  Google Scholar 

  • Price KV, Storn R, Lampinen J (2005) Differential evolution, a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  • Priestley MB (1988) Non-linear and non-stationary time series analysis. Academic Press, London

    Google Scholar 

  • Reeves CR (1993) Modern heuristic techniques for combinatorial problems. Wiley, New York

    MATH  Google Scholar 

  • Rissanen J (2007) Information and complexity in statistical models. Springer, Berlin

    Google Scholar 

  • Rudolph G (1997) Convergence properties of evolutionary algorithms. Verlag Dr. Kovač, Hamburg

    Google Scholar 

  • Teräsvirta T (1994) Specification, estimation and evaluation of smooth transition autoregressive models. J. Am Stat Assoc 89: 208–218

    Google Scholar 

  • Teräsvirta T (1998) Modeling economic relationships with smooth transition regression. In: Ullah A, Giles DEA (eds) Handbook of applied economic statistics. Marcel Dekker, New York, pp 507–552

    Google Scholar 

  • Tiao GC, Tsay RS (1994) Some advances in non-linear and adaptive modelling in time series. J Forecast 13: 109–131

    Article  Google Scholar 

  • Tong H (1990) Non linear time series: a dynamical system approach. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Tong H, Lim K (1980) Threshold autoregression, limit cycles and ciclical data. J R Stat Soc Ser B 42: 245–292

    MATH  Google Scholar 

  • Tsay RS (1986) Nonlinearity tests for time series. Biometrika 73: 461–466

    Article  MathSciNet  MATH  Google Scholar 

  • Wu B, Chang CL (2002) Using genetic algorithms to parameters (d, r) estimation for threshold autoregressive models. Comput Stat Data Anal 38: 315–330

    Article  MathSciNet  MATH  Google Scholar 

  • Wu S, Chen R (2007) Threshold variable determination and threshold variable driven switching autoregressive models. Statistica Sinica 17: 241–264

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Battaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, F., Protopapas, M.K. Multi–regime models for nonlinear nonstationary time series. Comput Stat 27, 319–341 (2012). https://doi.org/10.1007/s00180-011-0259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0259-z

Keywords

Mathematics Subject Classification (2000)

Navigation