Skip to main content
Log in

Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper proposes consistent and asymptotically Gaussian estimators for the parameters \(\lambda , \sigma \) and \(H\) of the discretely observed fractional Ornstein–Uhlenbeck process solution of the stochastic differential equation \(d Y_t = -\lambda Y_t dt + \sigma d W_t^H\), where \((W_t^H, t\ge 0)\) is the fractional Brownian motion. For the estimation of the drift \(\lambda \), the results are obtained only in the case when \(\frac{1}{2} < H < \frac{3}{4}\). This paper also provides ready-to-use software for the R statistical environment based on the YUIMA package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bercu B, Coutin L, Savy N (2010) Sharp large deviations for the fractional Ornstein-Uhlenbeck process. Teoriya Veroyatnostei i ee Primeneniya

  • Bertin K, Torres S, Tudor C (2011) Drift parameter estimation in fractional diffusions driven by perturbed random walk. Stat Probab Lett 81(2):243–249

    Article  MathSciNet  MATH  Google Scholar 

  • Bertoin J (1998) Lévy processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Berzin C, Leon J (2008) Estimation in models driven by fractional Brownian motion. Annales de l’Institut Henri Poincaré 44(2):191–213

    Article  MathSciNet  MATH  Google Scholar 

  • Bregni S, Erangoli W (2005) Fractional noise in experimental measurements of IP traffic in a metropolitan area network. Proc IEEE GlobeCom 2005(2):781–785

    Google Scholar 

  • Brouste A, Kleptsyna M (2010) Asymptotic properties of MLE for partially observed fractional diffusion system. Stat Inference Stoch Process 13(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein–Uhlenbeck processes. Electron J Probab 8(3):1–14

    MathSciNet  Google Scholar 

  • Cialenco I, Lototsky S, Pospisil J (2009) Asymptotic properties of the maximum likelihood estimator for stochastic parabolic equations with additive fractional Brownian motion. Stoch Dyn 9(2):169–185

    Article  MathSciNet  MATH  Google Scholar 

  • Cœurjolly JF (2001) Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat Inference Stoch Process 4(2):199–227

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Florens-Zmirou D (1989) Approximate discrete time schemes for statistics of diffusion processes. Statistics 20:263–284

    Article  MathSciNet  Google Scholar 

  • Genon-Catalot V (1990) Maximum constrast estimation for diffusion processes from discrete observation. Statistics 21:99–116

    Article  MathSciNet  MATH  Google Scholar 

  • Gobet E (2002) LAN property for ergodic diffusions with discrete observations. Annales de l’Institut Henri Poincaré 38(5):711–737

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat Probab Lett 80(11–12):1030–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Nualart D, Xiao W, Zhang W (2011) Exact maximum likelihood estimator for drift fractional brownian motion at discrete time. Acta Mathematica Scientia 31(5):1851–1859

    Article  MathSciNet  MATH  Google Scholar 

  • Istas J, Lang G (1997) Quadratic variations and estimation of the local Hölder index of a Gaussian process. Annales de l’Institut Henri Poincaré 23(4):407–436

    Article  MathSciNet  Google Scholar 

  • Jacod J (2001) Inference for stochastic processes. Statistics 683

  • Kaarakka T, Salminem P (2011) On fractional Ornstein–Uhlenbeck processes. Commun Stoch Anal 5(1):121–133

    MathSciNet  Google Scholar 

  • Kessler M (1997) Estimation of an ergodic diffusion from discrete observations. Scand J Stat 24:211–229

    Article  MathSciNet  MATH  Google Scholar 

  • Kleptsyna M, Breton AL (2002) Statistical analysis of the fractional Ornstein–Uhlenbeck type process. Stat Inference Stoch Process 5:229–241

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov A (1940) Winersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum. Acad Sci USSR 26:115–118

    Google Scholar 

  • Ludena C (2004) Minimum contrast estimation for fractional diffusion. Scand J Stat 31:613–628

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot B, Ness JV (1968) Fractional Brownian motions, fractional noises and application. SIAM Rev 10:422–437

    Article  MathSciNet  MATH  Google Scholar 

  • Melichov D (2011) On estimation of the Hurst index of solutions of stochastic equations. Ph.D. thesis, Vilnius Gediminas Technical University

  • Neuenkirch A, Nourdin I (2007) Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J Theor Probl 20(4):871–899

    Article  MathSciNet  MATH  Google Scholar 

  • Neuenkirch A, Tindel S (2011) A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise. preprint. http://hal.inria.fr/hal-00639030/PS/zero-squares-nt.ps

  • R Development Core Team: R (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. ISBN 3-900051-07-0

  • Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Willinger W, Taqqu M, Leland W, Wilson D (1995) Self-similarity in high-speed packet traffic: analysis and modeling of ethernet traffic measurements. Stat Sci 10:67–85

    Article  MATH  Google Scholar 

  • Wood A, Chan G (1994) Simulation of stationary Gaussian processes. J Comput Graph Stat 3(4):409–432

    MathSciNet  Google Scholar 

  • Xiao W, Zhang W, Xu W (2011) Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation. Appl Math Model 35:4196–4207

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida N (1992) Estimation for diffusion processes from discrete observations. J Multivar Anal 41:220–242

    Article  MATH  Google Scholar 

  • Yuima Project Team: yuima (2011) The YUIMA project package (unstable version). http://R-Forge.R-project.org/projects/yuima/. R package version 0.1.1936

Download references

Acknowledgments

We would like to thank Marina Kleptsyna for the discussions and her interest for this work. Computing resources have been financed by Mostapad project in CNRS FR 2962. This work has been supported by the project PRIN 2009JW2STY, Ministero dell’Istruzione dell’Università e della Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Brouste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouste, A., Iacus, S.M. Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package. Comput Stat 28, 1529–1547 (2013). https://doi.org/10.1007/s00180-012-0365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0365-6

Keywords

Navigation