Skip to main content
Log in

Optimal mean–variance investment/reinsurance with common shock in a regime-switching market

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of optimal investment-reinsurance with two dependent classes of insurance risks in a regime-switching financial market. In our model, the two claim-number processes are correlated through a common shock component, and the market mode is classified into a finite number of regimes. We also assume that the insurer can purchase proportional reinsurance and invest its surplus in a financial market, and that the values of the model parameters depend on the market mode. Using the techniques of stochastic linear-quadratic control, under the mean–variance criterion, we obtain analytic expressions for the optimal investment and reinsurance strategies, and derive closed-form expressions for the efficient strategies and the efficient frontiers which are based on the solutions to some systems of linear ordinary differential equations. Finally, we carry out a numerical study for illustration purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai L, Zhang H (2008) Dynamic mean–variance problem with constrained risk control for the insurers. Math Methods Oper Res 68:181–205

    Article  MathSciNet  MATH  Google Scholar 

  • Bi J, Guo J (2013) Optimal mean–variance problem with constrained controls in a jump-diffusion financial market for an insurer. J Optim Theory Appl 157:252–275

    Article  MathSciNet  MATH  Google Scholar 

  • Bi J, Liang Z, Xu F (2016) Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependent risks. Insur Math Econ 70:245–258

    Article  MATH  Google Scholar 

  • Björk T (1980) Finite dimensinal optimal filters for a class of Itô-processes with jumping parameters. Stochastics 4:167–183

    Article  MathSciNet  MATH  Google Scholar 

  • Browne S (1995) Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math Oper Res 20:937–957

    Article  MathSciNet  MATH  Google Scholar 

  • Bäuerle N (2005) Benchmark and mean–variance problems for insurers. Math Methods Oper Res 62:159–165

    Article  MathSciNet  MATH  Google Scholar 

  • Chen P, Yam SCP (2013) Optimal proportional reinsurance and investment with regime switching for mean–variance insurers. Insur Math Econ 53:871–883

    Article  MathSciNet  MATH  Google Scholar 

  • Chen P, Yang H, Yin G (2008) Markowitz’s mean–variance asset-liability management with regime switching: a continuous time model. Insur Math Econ 43(3):456–465

    Article  MathSciNet  MATH  Google Scholar 

  • Elliott RJ (1982) Stochastic calculus and applications. Springer, New York

    MATH  Google Scholar 

  • Fleming WH, Soner HM (1993) Controlled Markov processes and viscosity solutions. Springer, Berlin

    MATH  Google Scholar 

  • Gong L, Badescu AL, Cheung ECK (2012) Recursive methods for a multi-dimensional risk process with common shocks. Insur Math Econ 50:109–120

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy MR (2001) A regime-switching model of long-term stock returns. N Am Actuar J 5(2):41–53

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Zhou X, Lim AEB (2002) Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J Control Optim 40:1540–1555

    Article  MathSciNet  MATH  Google Scholar 

  • Liang Z, Bayraktar E (2014) Optimal reinsurance and investment with unobservable claim size and intensity. Insur Math Econ 55:156–166

    Article  MathSciNet  MATH  Google Scholar 

  • Liang X, Wang G (2012) On a reduced form credit risk model with common shock and regime switching. Insur Math Econ 51:567–575

    Article  MathSciNet  MATH  Google Scholar 

  • Liang Z, Yuen KC (2016) Optimal dynamic reinsurance with dependent risks: variance premium principle. Scand Actuar J 1:18–36

    Article  MathSciNet  MATH  Google Scholar 

  • Liang Z, Yuen KC, Guo J (2011) Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process. Insur Math Econ 49:207–215

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7:77–91

    Google Scholar 

  • Merton RC (1972) An analytical derivation of the efficient portfolio frontier. J Financ Quant Anal 7:1851–1872

    Article  Google Scholar 

  • Ming Z, Liang Z, Zhang C (2016) Optimal mean-variance reinsurance with common shock dependence. ANZIAM 58:162–181

    Article  MathSciNet  MATH  Google Scholar 

  • Promislow D, Young V (2005) Minimizing the probability of ruin when claims follow Brownian motion with drift. N Am Actuar J 9(3):109–128

    MathSciNet  MATH  Google Scholar 

  • Schmidli H (2002) On minimizing the ruin probability by investment and reinsurance. Ann Appl Probab 12:890–907

    Article  MathSciNet  MATH  Google Scholar 

  • Wu H, Li Z (2012) Multi-period mean-variance portfolio selection with regime switching and stochastic cash flow. Insur Math Econ 50:371–384

    Article  MathSciNet  MATH  Google Scholar 

  • Yong J, Zhou X (1999) Stochastic controls: Hamilton systems and HJB equations. Springer, New York

    Book  MATH  Google Scholar 

  • Yuen KC, Guo J, Wu X (2002) On a correlated aggregate claims model with Poisson and Erlang risk process. Insur Math Econ 31:205–214

    Article  MATH  Google Scholar 

  • Yuen KC, Guo J, Wu X (2006) On the first time of ruin in the bivariate compound Poisson model. Insur Math Econ 38:298–308

    Article  MathSciNet  MATH  Google Scholar 

  • Yuen KC, Liang Z, Zhou M (2015) Optimal proportional reinsurance with common shock dependence. Insur Math Econ 64:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X (2009) Applications of Markov-modulated processes in insurance and finance. Doctoral Dissertation

  • Zhou X, Li D (2000) Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl Math Opt 42:19–33

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Yin G (2003) Markowitz’s mean-variance portfolio selection with regime switching: a continuous-time model. SIAM J Control Optim 42(4):1466–1482

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading and helpful comments on an earlier version of this paper, which led to a considerable improvement of the presentation of the work. Junna Bi is supported by National Natural Science Foundation of China (Grant Numbers 11571189, 11871219 and 11871220) and 111 Project (B14019). Zhibin Liang is supported by National Natural Science Foundation of China (Grant No. 11471165) and Jiangsu Natural Science Foundation (Grant No. BK20141442). Kam Chuen Yuen is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU17329216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Theorem 4.1

Let \(\pi \) be any strategy from \({\widehat{\Pi }}\) and satisfy (2.7). We first define a number of functions with the form

$$\begin{aligned} \varphi (t, x, i)=P(t, i)[x+({\tilde{\lambda }}-z)H(t, i)]^2, \quad i=1,2,\ldots l. \end{aligned}$$

Then we have

$$\begin{aligned} \varphi _{t}(t,x,i)= & {} {\dot{P}}(t,i)[x+({\tilde{\lambda }}-z)H(t,i)]^2+2({\tilde{\lambda }}-z)P(t,i){\dot{H}}(t, i)[x+({\tilde{\lambda }}-z)H(t, i)], \\ \varphi _{x}(t,x,i)= & {} 2P(t,i)[x+({\tilde{\lambda }}-z)H(t,i)], \\ \varphi _{xx}(t,x,i)= & {} 2P(t,i). \end{aligned}$$

Applying the generalized Itô’s formula for Markov-modulated processes to \(\varphi (t,X(t),\alpha (t))\) yields

$$\begin{aligned}&d\{P(t, \alpha (t))[X(t)+({\tilde{\lambda }}-z)H(t, \alpha (t))]^2\}\\&\quad = \bigg \{{\dot{P}}(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))]^2\\&\qquad + 2({\tilde{\lambda }}-z)P(t,\alpha (t-)){\dot{H}}(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))] \nonumber \\&\qquad + 2P(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))] \\&\qquad \times \Big [r_{0}(t,\alpha (t-))X(t)+A(t,\alpha (t-))q_{1}(t)+B(t,\alpha (t-))q_{2}(t)+C(t,\alpha (t-))\xi (t)\Big ]\\&\qquad + P(t,\alpha (t-)) \Big [\sigma ^{2}(t,\alpha (t-))\xi ^{2}(t)\\&\qquad +\sigma ^{2}_{1}(t,\alpha (t-))q_{1}^{2}(t)+\sigma ^{2}_{2}(t,\alpha (t-))q_{2}^{2}(t)\\&\qquad + 2\rho (t,\alpha (t-))\sigma _{1}(t,\alpha (t-))\sigma _{2}(t,\alpha (t-))q_{1}(t)q_{2}(t)\Big ]\\&\qquad + \sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t,j)[X(t)+({\tilde{\lambda }}-z)H(t,j)]^2\bigg \}dt \\&\qquad + \{\ldots \}dW(t)+\{\ldots \}dM(t). \end{aligned}$$

With tedious calculations, we have

$$\begin{aligned}&d\{P(t, \alpha (t))[X(t)+({\tilde{\lambda }}-z)H(t, \alpha (t))]^2\} \\&\quad = P(t,\alpha (t-))G(q_{1}(t),q_{2}(t))dt -P(t,\alpha (t-))E(t,\alpha (t-)){[}X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))]^{2}dt\\&\qquad + P(t,\alpha (t-))\sigma ^{2}(t,\alpha (t-))\big [\xi (t)-\xi ^{*}(t,X(t),\alpha (t-))\big ]^{2}dt\\&\qquad - \frac{C^{2}(t,\alpha (t-))}{\sigma ^{2}(t,\alpha (t-))}P(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))]^{2}dt\\&\qquad + X(t)^{2}\bigg [ {\dot{P}}(t, \alpha (t-))+2r_{0}(i)P(t,\alpha (t-))-\sum _{j=1}^l\delta _{\alpha (t-)j}P(t, j)\bigg ] dt\\&\qquad + X(t)\bigg \{2{\dot{P}}(t, \alpha (t-))({\tilde{\lambda }}-z)H(t,\alpha (t-))+2({\tilde{\lambda }}-z)P(t, \alpha (t-)){\dot{H}}(t,\alpha (t-)) \\&\qquad + 2P(t,\alpha (t-)) \Big [({\tilde{\lambda }}-z)r_{0}(t,\alpha (t-))H(t,\alpha (t-))+D(t,\alpha (t-))\Big ]\\&\qquad + 2({\tilde{\lambda }}-z)\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) H(t,j)\bigg \}dt \\&\qquad + \bigg \{{\dot{P}}(t, \alpha (t-)) ({\tilde{\lambda }}-z)^{2}H^{2}(t,\alpha (t-)) + 2({\tilde{\lambda }}-z)^{2}P(t,\alpha (t-)){\dot{H}}(t,\alpha (t-))H(t,\alpha (t-))\\&\qquad + 2P(t,\alpha (t-))({\tilde{\lambda }}-z)H(t,\alpha (t-))D(t) +({\tilde{\lambda }}-z)^{2}\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) H^{2}(t,j)\bigg \} dt \\&\qquad + \{\ldots \}dW(t)+\{\ldots \}dM(t). \end{aligned}$$

After some simple calculations and rearranging terms, we obtain

$$\begin{aligned}&d\{P(t, \alpha (t))[X(t)+({\tilde{\lambda }}-z)H(t, \alpha (t))]^2\} \\&\quad =P(t,\alpha (t-))G(q_{1}(t),q_{2}(t))dt \\&\qquad + P(t,\alpha (t-))\sigma ^{2}(t,\alpha (t-))\big [\xi (t)-\xi ^{*}(t,X(t),\alpha (t-))\big ]^{2} dt \\&\qquad + X(t)\bigg \{2{\dot{P}}(t, \alpha (t-))({\tilde{\lambda }}-z)H(t,\alpha (t-))+2({\tilde{\lambda }}-z)P(t, \alpha (t-)){\dot{H}}(t,\alpha (t-)) \\&\qquad + 2P(t, \alpha (t-))[({\tilde{\lambda }}-z)r_{0}(t,\alpha (t-))H(t,\alpha (t-))+D(t, \alpha (t-)] \\&\qquad + 2({\tilde{\lambda }}-z)\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) H(t,j)\bigg \}dt \\&\qquad + \bigg \{{\dot{P}}(t, \alpha (t-))({\tilde{\lambda }}-z)^{2}H^{2}(t,\alpha (t-))+2({\tilde{\lambda }}-z)^{2}P(t, \alpha (t-)){\dot{H}}(t,\alpha (t-))H(t,\alpha (t-)) \\&\qquad + 2P(t, \alpha (t-))({\tilde{\lambda }}-z)H(t,\alpha (t-))D(t, \alpha (t-) \\&\qquad + ({\tilde{\lambda }}-z)^{2}\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) H^{2}(t,j)\bigg \}dt \\&\qquad + \{\ldots \}dW(t)+\{\ldots \}dM(t) \end{aligned}$$

and then

$$\begin{aligned}&d\{P(t, \alpha (t))[X(t)+({\tilde{\lambda }}-z)H(t, \alpha (t))]^2\} \nonumber \\&\quad = P(t,\alpha (t-))G(q_{1}(t),q_{2}(t))dt \nonumber \\&\qquad + P(t,\alpha (t-))\sigma ^{2}(t,\alpha (t-))\big [\xi (t)-\xi ^{*}(t,X(t),\alpha (t-))\big ]^{2}dt\nonumber \\&\qquad +0\times X(t)^{2}dt+0\times X(t)dt \nonumber \\&\qquad + \bigg \{{\dot{P}}(t,\alpha (t-))({\tilde{\lambda }}-z)^{2}H^{2}(t,\alpha (t-)) + \ 2({\tilde{\lambda }}-z)^{2}\nonumber \\&\qquad P(t, \alpha (t-)){\dot{H}}(t,\alpha (t-))H(t,\alpha (t-)) \nonumber \\&\qquad + 2P(t, \alpha (t-))({\tilde{\lambda }}-z)H(t,\alpha (t-))D(t,\alpha (t-)) \nonumber \\&\qquad + ({\tilde{\lambda }}-z)^{2}\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) H^{2}(t,j)\bigg \}dt \nonumber \\&\qquad + \{\ldots \}dW(t)+\{\ldots \}dM(t) \nonumber \\&\quad = P(t,\alpha (t-))G(q_{1}(t),q_{2}(t))dt \nonumber \\&\qquad + P(t,\alpha (t-))\sigma ^{2}(t,\alpha (t-))\big [\xi (t)-\xi ^{*}(t,X(t),\alpha (t-))\big ]^{2} dt \nonumber \\&\qquad + \bigg \{({\tilde{\lambda }}-z)^{2}\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) \big [H(t,\alpha (t-))-H(t,j)\big ]^{2}\bigg \}dt \nonumber \\&\qquad + \{\ldots \}dW(t)+\{\ldots \}dM(t), \end{aligned}$$
(7.1)

where

$$\begin{aligned} G(q_{1}(t),q_{2}(t))= & {} \sigma ^{2}_{1}(t,\alpha (t-))q_{1}^{2}(t)+\sigma ^{2}_{2}(t,\alpha (t-))q_{2}^{2}(t)\\&+ 2A(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))]q_{1}(t)\\&+ 2B(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))]q_{2}(t)\\&+ 2\rho (t,\alpha (t-))\sigma _{1}(t,\alpha (t-))\sigma _{2}(t,\alpha (t-))q_{1}(t)q_{2}(t)\\&+ E(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))]^{2}, \end{aligned}$$

and M(t) is a zero expected value martingale. Note that Eqs. (4.1) and (4.2) are used in the derivation of (7.1). Integrating (7.1) from 0 to T and taking expectations, we get

$$\begin{aligned}&J(x_0, i_0, q_{1}(\cdot ),q_{2}(\cdot ),\xi , {\tilde{\lambda }})\\&\quad = {\mathbb {E}}[X(T)+{\tilde{\lambda }}-z]^2-{\tilde{\lambda }}^2 \\&\quad = {\mathbb {E}}\int _{0}^{T}P(t,\alpha (t-))G(q_{1}(t),q_{2}(t))dt\\&\qquad + \ {\mathbb {E}}\int _{0}^{T}P(t,\alpha (t-))\sigma ^{2}(t,\alpha (t-))\big [\xi (t)-\xi ^{*}(t,X(t),\alpha (t-))\big ]^{2}dt \\&\qquad + \ {\mathbb {E}}\int _{0}^{T} ({\tilde{\lambda }}-z)^{2}\left\{ \sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) \big [H(t,\alpha (t-))-H(t,j)\big ]^{2}\right\} dt \\&\qquad + \ P(0, i_0)[x_0+({\tilde{\lambda }}-z)H(0, i_0)]^{2}-{\tilde{\lambda }}^{2} \\&\quad \ge ({\tilde{\lambda }}-z)^{2}{\mathbb {E}}\int _{0}^{T} \left\{ \sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j) \big [H(t,\alpha (t-))-H(t,j)\big ]^{2}\right\} dt \\&\qquad + \ P(0, i_0)[x_0+({\tilde{\lambda }}-z)H(0, i_0)]^{2}-{\tilde{\lambda }}^{2} \\&\quad = \big [P(0, i_0)H^{2}(0, i_0)+\theta (i_{0})-1\big ]({\tilde{\lambda }}-z)^{2} \\&\qquad + \ 2\big [P(0, i_0)H(0,i_0)x_{0}-z\big ]({\tilde{\lambda }}-z) \\&\qquad + \ P(0, i_0)x_{0}^{2}-z^{2}, \end{aligned}$$

where \(\theta (i_{0})\) is given in (4.9). Note that Lemma 4.1 is used in the above calculations, that is, \(G(\cdot ,\cdot )\) attains its minimum value 0 at \((q_{1}^{*}(\cdot ),q_{2}^{*}(\cdot ))\). For the optimal strategy \(\pi ^{*}(t,x,i)\) of (4.7), the inequality becomes an equality, and hence we obtain (4.8). \(\square \)

Appendix B: The proof of Proposition 4.1

Plugging the optimal feedback control (4.7) into the dynamic of X(t) in (2.7), applying the generalized Itô’s formula for Markov-modulated processes, and using the dynamics of P(ti) and Q(ti) in (4.1)-(4.2), we obtain

$$\begin{aligned}&d\{P(t, \alpha (t))[X(t)+({\tilde{\lambda }}-z)H(t, \alpha (t-))]\} \\&\quad =\bigg \{{\dot{P}}(t,\alpha (t-))[X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))] \\&\qquad + \ ({\tilde{\lambda }}-z)P(t,\alpha (t-)){\dot{H}}(t, \alpha (t-)) + P(t,\alpha (t-)) \\&\qquad \times \bigg [r_{0}(t,\alpha (t-))X(t) + \bigg (\frac{A(t,\alpha (t-))K_1(t,\alpha (t-)) + B(t,\alpha (t-)) K_2(t,\alpha (t-))}{\sigma _{1}^{2}(t,\alpha (t-))\sigma _{2}^{2}(t,\alpha (t-))(1-\rho ^{2}(t,\alpha (t-)))} \\&\qquad - \ \frac{C^{2}(t,\alpha (t-))}{\sigma ^{2}(t,\alpha (t-))}\bigg ) \times \bigg (X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))\bigg )+D(t,\alpha (t-))\bigg ]\biggr \}dt \\&\qquad + \sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t,j)[X(t)+({\tilde{\lambda }}-z)H(t,j)] dt\\&\qquad + \{\ldots \}dW(t)+\{\ldots \}dM(t) \\&\quad = \bigg \{ \bigg [-2r_{0}(t, \alpha (t-))P(t, \alpha (t-))-\sum _{j=1}^{l}\delta _{ij}P(t, j)\bigg ]\big [X(t)+ ({\tilde{\lambda }}-z)H(t,\alpha (t-))\big ]\\&\qquad + \ r_{0}(t, \alpha (t-))({\tilde{\lambda }}-z)P(t,\alpha (t-))H(t, \alpha (t-))-P(t,\alpha (t-))D(t, \alpha (t-))\\&\qquad - \ ({\tilde{\lambda }}-z)\sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t, j)\big [H(t, j)-H(t, \alpha (t-))\big ] \\&\qquad + \ P(t,\alpha (t-))r_{0}(t, \alpha (t-))X(t)+P(t,\alpha (t-))D(t, \alpha (t-))\biggr \}dt\\&\qquad + \ \sum _{j=1}^{l}\delta _{\alpha (t-)j}P(t,j)[X(t)+({\tilde{\lambda }}-z)H(t,j)] dt\\&\qquad + \ \{\ldots \}dW(t)+\{\ldots \}dM(t) \\&\quad =\biggr \{-r_{0}(t,\alpha (t-))P(t,\alpha (t-))\big [X(t)+({\tilde{\lambda }}-z)H(t,\alpha (t-))\big ]\biggr \}dt\\&\qquad + \ \{\ldots \}dW(t)+\{\ldots \}dM(t), \end{aligned}$$

where

$$\begin{aligned} K_1(t,\alpha (t-))= & {} B(t,\alpha (t-))\rho (t,\alpha (t-)) \sigma _{1}(t,\alpha (t-))\sigma _{2}(t,\alpha (t-))\\&-A(t,\alpha (t-))\sigma _{2}^{2}(t,\alpha (t-)), \\ K_2(t,\alpha (t-))= & {} A(t,\alpha (t-))\rho (t,\alpha (t-)) \sigma _{1}(t,\alpha (t-))\sigma _{2}(t,\alpha (t-))\\&-B(t,\alpha (t-))\sigma _{1}^{2}(t,\alpha (t-)). \end{aligned}$$

Then arguments similar to those in the proof of Theorem 4.2 in Chen and Yam (2013) can be used to reach the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Liang, Z. & Yuen, K.C. Optimal mean–variance investment/reinsurance with common shock in a regime-switching market. Math Meth Oper Res 90, 109–135 (2019). https://doi.org/10.1007/s00186-018-00657-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-018-00657-3

Keywords

Mathematics Subject Classification

Navigation