Skip to main content
Log in

A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The computation of regional gravimetric geoid models with reasonable accuracy, in developing countries, with sparse data is a difficult task that needs great care. Here we investigate the procedure for gathering, evaluating and combining different data for the determination of a gravimetric geoid model for Iran, where limited ground gravity data are available. Heterogeneous data, including gravity anomalies, the high-resolution Shuttle Radar Topography Mission global digital terrain model and different global geopotential models including recently published Gravity Recovery and Climate Experiment models, are combined through least-squares modification of the Stokes formula. The new gravimetric geoid model, IRG04, agrees considerably better with GPS/levelling than any of the other recent local geoid model in the area. Its RMS fit with GPS/levelling is 0.27 m and 3.8 ppm in the absolute and relative view, respectively. The relative accuracy of IRG04 is four times better than the most recently published global and regional geoid models available in this area. This progress shows the practical potential of the method of least-squares modification of Stokes’s formula in combination with heterogeneous data for regional geoid determination

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardalan R, GrafarendE(2004) High resolution geoid computation without applying Stokes’s formula case study: high resolution geoid of Iran. J Geod 78:138-156

    Google Scholar 

  • Featherstone WE (2003) Tests of two forms of Stokes’s integral using a synthetic gravity field based on spherical harmonics. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy, the challenge of the third millenium. Springer, Berlin Heidelberg New York, pp 163–171

    Google Scholar 

  • Hamesh M (1991) Technical report about adjustment of Iranian first order levelling network. NCC J Surveying 1:9–20

    Google Scholar 

  • Hamesh M, Zomorrodian H (1992) Iranian gravimetric geoid determination-Second step. NCC J Surveying 6:17–24, 52–63

    Google Scholar 

  • Hastings DA (1996) The global land 1-km base elevation (GLOBE) project. Boulder, Colorado National Geophysical Data Center

  • Kiamehr R (2001) Potential of Iranian geoid for GPS/Levelling. In: Proceedings of geomatics 80 conferences, National Cartographic Centre of Iran, Tehran, CD-ROM

  • Kiamehr R (2003a) Comparison relative accuracy of EGM96 and Iranian gravimetric geoid. In: Proceedings sixth international conference of civil engneering. Isfahan University of Technology, Iran, pp 537–544

  • Kiamehr R (2003b) Discussion about relative accuracy of IFAG geoid. J Sepehr Iranian Geographic Organization, 42:13–18

    Google Scholar 

  • Kiamehr R (2004) The relative accuracies of recent satellite gravimetric models in Iran. In: Proceedings of IAG international symposium gravity, geoid and space missions – GGSM2004, Porto, Portugal, CD-ROM

  • Kiamehr R (2005) Qualification and refinement of the Iranian gravity database. In: Proceedings of geomatics 84 conferences, National Cartographic Centre of Iran, Tehran, CD-ROM

  • Kiamehr R, Sjöberg LE (2005a) The qualities of Iranian gravimetric geoid models versus recent gravity field missions. J SGG 49:289–304

    Google Scholar 

  • Kiamehr R, Sjöberg LE (2005b) Effect of the SRTM global DEM in the determination of a high-resolution geoid model of Iran. J Geod 79(9):540–551

    Article  Google Scholar 

  • Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geod 73(8):412–421

    Article  Google Scholar 

  • Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Chinn D, Cox C, Klosko S, Luthcke S, Torrence M, Wang Y, Willimason R, Pavlis E, Rapp R, Olson T (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential Model EGM96. NASA/TP1998206861

  • Najafi M (2004) Technical report of the KNT University geoid model. Department of research, National Cartographic Centre (NCC), TOTAK project, Iran

  • Paul NK (1973) A method of evaluating the truncation error coefficients for geoidal height. Bull Geod 110:413–425

    Article  Google Scholar 

  • Rapp R, Pavlis N (1990) The development and analysis of geopotential coefficient models to spherical harmonic degree 360. JGR 95(B13):0148–022

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. JGR 102(B5):10039–10054

    Article  Google Scholar 

  • Sjöberg LE (1984) Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for truncation and potential coefficient errors. Manuscr Geod 9:209–229

    Google Scholar 

  • Sjöberg LE (1986) Comparison of some methods of modifying Stokes formula. Presented at the International Symposium On the Definition of the Geoid, Florence, 26 30 May, 1986. Bollettino di Geodesia e Scienze Affini 3:229–248

  • Sjöberg LE (1991) Refined least squares modification of Stokes’ formula. Manuscr Geod 16:367–375

    Google Scholar 

  • Sjöberg LE (2001) Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of degree zero and one. J Geod 75:283–290

    Article  Google Scholar 

  • Sjöberg LE (2003a) Improving modified Stokes’ formula by GOCE data. Boll Geod Sci Aff 61(3):215–225

    Google Scholar 

  • Sjöberg LE (2003b) A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J Geod 74:255–268

    Google Scholar 

  • Sjöberg LE (2003c) A general model of modifying Stokes’ formula and its least squares solution. J Geod 77:459–464

    Article  Google Scholar 

  • Sjöberg LE (2003d) A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J Geod 77:94–100

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Poole S, Wang F (2005) GGM02–an improved Earth gravity field model from GRACE. J Geod 79(8):467–478

    Article  Google Scholar 

  • Tscherning CC, Rapp R (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of vertical implied by anomaly degree variance models. Report No 208, Department of Geodesy Science, Ohio State University, Columbus

    Google Scholar 

  • Vaníček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE (1995) Higher-degree reference field in the generalized Stokes–Helmert scheme for geoid computation. J Geod 70:176–182

    Article  Google Scholar 

  • Weber G, Zommorrodian H (1988) Regional geopotential model improvement for the regional Iranian geoid determination. Bullet Géodésique 62:125–141

    Article  Google Scholar 

  • Wenzel G (1985) Hochauflösende Kuglefunktionsmodelle für das Gravitationspotential der Erde. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover Nr. 135

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kiamehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiamehr, R. A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran. J Geodesy 79, 602–612 (2006). https://doi.org/10.1007/s00190-005-0009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-005-0009-5

Keywords

Navigation