Skip to main content
Log in

A Quaternion-based Geodetic Datum Transformation Algorithm

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper briefly introduces quaternions to represent rotation parameters and then derives the formulae to compute quaternion, translation and scale parameters in the Bursa–Wolf geodetic datum transformation model from two sets of co-located 3D coordinates. The main advantage of this representation is that linearization and iteration are not needed for the computation of the datum transformation parameters. We further extend the formulae to compute quaternion-based datum transformation parameters under constraints such as the distance between two fixed stations, and develop the corresponding iteration algorithm. Finally, two numerical case studies are presented to demonstrate the applications of the derived formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreis D, Canuto ES (2004) Orbit dynamics and kinematics with full quaternions. In: Proceedings of the 2004 American control conference Boston, Massachusetts, June 30 – July 2, pp 3660–3665

  • Awange LJ, Grafarend EW (2003) Overdetermined 7 parameter datum transformation. Allge Vermess Nachr 110(4):130–148

    Google Scholar 

  • Bettadpur S (2003) GRACE UTCSR L-2 Proc Standards Doc - RL 0001, CSR-GR-03-03, Center for Space Research, The University of Texas at Austin

  • Bock R, Luehr H (2001) CHAMP attitude aberration correction, Doc CH-GFZ_TN_2702, GeoForschungsZentrum, Postdam

  • Burša M (1962) The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from observations of artificial Earth satellites. Stud Geophys Geod 6:209–214

    Article  Google Scholar 

  • Chen Y, Shen YZ, Liu DJ (2004) A simplified model of three dimensional datum transformation adapted to big rotation angle (in Chinese with English abstract). Geomatics Inform Sci Wuhan Univ 29(12):1102–1104

    Google Scholar 

  • Grafarend EW, Krumm F, Okeke F (1995) Curvilinear geodetic datum transformations. Z Vermess 120(7):334–350

    Google Scholar 

  • Grafarend EW, Awange LJ (2003) Nonlinear analysis of the three-dimensional datum transformation [conformal group 7(3)]. J Geod 77:66–76

    Article  Google Scholar 

  • Hamilton WR (1853) Lectures on quaternions: containing a systematic statement of a New mathematical method. Hodges and Smith, Dublin

    Google Scholar 

  • Joseph J, Laviola J (2003) A comparison of unscented and extended Kalman filtering for estimating quaternion motion. IEEE Press, 0-7803-7896-2/03, pp 2435–2440

  • Kim A, Golnaraghi MF (2004) A quaternion-based orientation estimation algorithm using an inertial measurement unit. IEEE Press 0-7803-8416-4/04, pp 268–272

  • Liu JF (2004) Three dimensional rotation represented by quaternion. (in Chinese with English abstract). Coll Phys 23(4):39–43

    Google Scholar 

  • Nadler A, Itzhack Y, Itzhack B, Weiss H (2000) On algorithms for attitude estimation using GPS. In: Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia December, pp 3321–3326

  • Peng HM, Chiang YT, Chang FR (2000) Maximum-likelihood-based filtering for attitude determination via GPS carrier phase. In: Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia December, pp 480–487

  • Shen YZ, Wei G (1998) Improvement of three dimensional coordinate transformation model by use of interim coordinate system (in Chinese with English abstract). Acta Geod Cartogr Sinica 27:161–165

    Google Scholar 

  • Soler T (1998) A compendium of transformation formulas useful in GPS work. J Geod 72(7–8):482–490

    Article  Google Scholar 

  • Vaníček P, Steeves RR (1996) Transformation of coordinates between two horizontal geodetic datums. J Geod 70:740–745

    Google Scholar 

  • Vaníček P, Novák P, Craymer MR, Pagiatakis S (2002) On the correct determination of transformation parameters of a horizontal geodetic datum. Geomatica 56(4):329–340

    Google Scholar 

  • Welsch WM (1993) A general 7-parameter transformation for the combination, comparison and accuracy control of the terrestrial and satellite network observations. Manuscr Geod 17:210–214

    Google Scholar 

  • Wolf H (1963) Geometric connection and re-orientation of three-dimensional triangulation nets. Bull Geod 68:165–169

    Article  Google Scholar 

  • Xu PL (1986) Variance-covariance propagation for a nonlinear function (in Chinese with an English abstract). J Wuhan Techn Uni Surv Mapp 11(2):92–99

    Google Scholar 

  • Xu PL (1999) Spectral theory of constrained second-rank symmetric random tensors. Geophys J Int 138:1–24

    Article  Google Scholar 

  • Xu PL, Grafarend EW (1996) Statistics and geometry of the eigenspectra of 3-D second-rank symmetric random tensor. Geophys J Int 127:744–756

    Article  Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geod 73:268–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. -Z. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y.Z., Chen, Y. & Zheng, D.H. A Quaternion-based Geodetic Datum Transformation Algorithm. J Geodesy 80, 233–239 (2006). https://doi.org/10.1007/s00190-006-0054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0054-8

Keywords

Navigation