Skip to main content
Log in

The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The TOPEX/Poseidon (T/P) satellite alti- meter mission marked a new era in determining the geopotential constant W 0. On the basis of T/P data during 1993–2003 (cycles 11–414), long-term variations in W 0 have been investigated. The rounded value W 0 =  62636856.0 ± 0.5) m 2 s −2 has already been adopted by the International Astronomical Union for the definition of the constant L G W 0/c 2 =  6.969290134 ×  10−10 (where c is the speed of light), which is required for the realization of the relativistic atomic time scale. The constant L G , based on the above value of W 0, is also included in the 2003 International Earth Rotation and Reference Frames Service conventions. It has also been suggested that W 0 is used to specify a global vertical reference system (GVRS). W 0 ensures the consistency with the International Terrestrial Reference System, i.e. after adopting W 0, along with the geocentric gravitational constant (GM), the Earth’s rotational velocity (ω) and the second zonal geopotential coefficient (J 2) as primary constants (parameters), then the ellipsoidal parameters (a,α) can be computed and adopted as derived parameters. The scale of the International Terrestrial Reference Frame 2000 (ITRF2000) has also been specified with the use of W 0 to be consistent with the geocentric coordinate time. As an example of using W 0 for a GVRS realization, the geopotential difference between the adopted W 0 and the geopotential at the Rimouski tide-gauge point, specifying the North American Vertical Datum 1988 (NAVD88), has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AVISO User Handbook (1996) Merged TOPEX/POSEIDON Products (GDR-Ms) AVI–NT–02–101–CN, Edition 3.0, AVISO Publisher

  • Burša M (1995a) Geoidal potential free of zero-frequency tidal distortion. Earth Moon Planets 71:59–64

    Article  Google Scholar 

  • Burša M (1995b) IAG SC3, Final report. Travaux de L’Association Internationale de Géodésie 30:370–384

    Google Scholar 

  • Burša M, Kouba J, Kumar M, Müller A, Raděj K, True SA, Vatrt V, Vojtíšková M (1999a) Geoidal geopotential and World Height System. Stud Geophys Geod 43:327–337

    Article  Google Scholar 

  • Burša M, Kouba J, Raděj K, Scott AT (1999b) Determination of the geopotential at the tide gauge defining the North American Vertical Datum 1988 (NAVD88). Geomatica 53(3):291–296

    Google Scholar 

  • Burša M, Groten E, Kenyon S, Kouba J, Raděj K, Vatrt V, Vojtíšková M (2002a) Earth’s dimension specified by geoidal geopotential. Stud Geophys Geod 46:1–8

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Raděj K, Vatrt V, Vojtíšková M, šimek J (2002b) World height system specified by Geopotential at tide gauge stations. In: Drewes H, Dodson AH, Fortes LPS, Sánches L, Sandoval P (eds) Vertical reference systems. Springer, Berlin Heidelberg New York, pp 291–296

    Google Scholar 

  • Burša M, Kenyon S, Kouba J, šíma Z, Vatrt V, Vojtíšková M (2004) A global vertical reference frame based on four regional vertical datums. Stud Geophys Geod 48(3):493–502

    Article  Google Scholar 

  • Dorandeu J, Le Trayon PY (1999) Effects of global mean pressure variations on sea level changes from TOPEX/POSEIDON. J Atmos Ocean Technol 16:1279–1283

    Article  Google Scholar 

  • Fukushima T (1994) Time ephemeris. In: Kinoshita H, Nakai H (eds) Proceedings of the 26th symposium on celestial mechanics, Tokyo, Japan, January 12–13, 1994, pp 149–159

  • Groten E (2004) Fundamental parameters and current (2004) Best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. J Geod 77(10-11):724–731

    Article  Google Scholar 

  • Kouba J (2001) International GPS service (IGS) and world height system. Proc Acta Geod 1:35–46

    Google Scholar 

  • Kouba J (2004) Improved relativistic transformations in GPS. GPS Solutions 8(3):170–180

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The Development of the joint NASA GSFC and NIMA Geopotential Model EGM96; http://cddis.nasa.gov/926/ egm96/egm96.html or NASA Technical paper NASA/ TP1998206861, Goddard Space Flight Center, Greenbelt, USA

  • Mainville A (1997) The February 1997 GPS on BM data file from Canada, a distribution data set for 1482 stations in Canada, Geodetic Survey Division, Natural Resources Canada Ottawa, Canada, May 9

  • McCarthy DD, Petit G (eds) (2004) IERS conventions (2003). IERS Conventions Centre, IERS Technical Note No. 32, Vlg. des Bundesamts für Kartographie und Geodäsie, Frankfurt a. M., 127 pp

  • Milbert DG (1995) Improvement of a high resolution geoid height model in the U.S. by GPS heights on NAVD88 benchmarks, IGeS Bulletin N. 4 “New Geoids in the world”, International Geoid Service, D.I.I.A.R. – Politecnico di Milano, 13–36

  • Molodensky MS (1945) Basic problems of geodetic gravimetry. Trudy TsNIIGAiK, vyp. 42, 107 pp. The English version by the Office of Technical Services US Department of Commerce. In: Molodensky MS (ed) 1958: Grundbegriffe der geodätischen Gravimetrie (in German). S. 15–147, VEB Verlag Technik, Berlin

  • Molodensky MS, Yeremeev VF, Yurkina MI (1960) Methods for study of the external gravitational field and figure of the Earth. Trudy TsNIIGAiK, Geodezizdat, Moscow (in Russian, English transl.: Israel Program for Scientific Translation, Jerusalem, 1962, 248 pp)

  • Moritz H (1980) Geodetic reference system 1980. Bull Géod 54(3):395–405

    Article  Google Scholar 

  • Nesvorný D, šíma Z (1994) Refinements of the geopotential scale factor R 0 on the satellite altimetry basis. Earth Moon Planets 65:79–88

    Article  Google Scholar 

  • NRC (National Research Council) (1997) Satellite gravity and the geosphere, contributions to the study of the solid Earth and its fluid envelope, In: Dickey J (ed) Commission on Geosciences, Enviroment, and Resources. National Academy Press, Washington, pp 112

  • Petit G (1998) Importance of a common framework for the realization of space-time reference systems. In: Rummel R, Drewes H, Bosh W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS) International Association of Geodesy Symposia, vol.120. Springer, Berlin Heidelberg New York, pp 1–7

    Google Scholar 

  • Pizzetti P (1907) Höhere Geodäsie. Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Des sechsten Bandes erster Teil. Heft No. 2, Geodäsie und Geophysik, Leipzig, Verlag und Druck von B. G. Teubner, pp 117–243

  • Pizzetti P (1913) Principii della teoria meccanica della figura dei pianeti. Pisa. E. Spoerri, XIII + 251 pp

  • Rummel R, Heck B (2000) Report of the EUREF Techn. WG, IAG Section I, Comm. X, EUREF public (9), Munich, pp 114–115

  • Seidelmann PK, Fukushima T (1992) Why new time scales? Astron Astrophys 265:833–838

    Google Scholar 

  • Soffel MH, Muller J, Wu X, Xu C (1991) Consistent relativistic VLBI theory with picosecond accuracy. Astron J 101:2306–2310

    Article  Google Scholar 

  • Soffel MH (2002) Practical consequencences of resolutions B1.3, B1.4, B1.5 and B1.9 concerning “Relativity in Astrometry, celestial Mechanics and Metrology”. In: Capitaine N, Gambis D, McCarthy DD, Petit G, Ray J, Richter B, Rothacher M, Standish EM, Vondrak J (eds) IERS technical Note No. 29; Proceedings of the IERS workshop on the Implementation of the New IAU Resolutions. Verlag des Bundesamtes für Kartograhie und Geodäsie, Frankfurt a. M.

  • Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02 – an improved Earth gravity field model from GRACE. J Geod DOI 10.1007/s00190-005-0480-z

  • Wolf P, Petit G (1995) Relativistic theory for clock syntonization and the realization of geocentric coordinate times. Astron Astrophys 304:653–661

    Google Scholar 

  • Yurkina MI (1981) Geopotential at the vertical datum and controlling the levelling (in Russian). Geod Cartogr 10:11–15

    Google Scholar 

  • Yurkina MI (1996) Gravity potential at the major vertical datum as primary geodetic constant. Stud Geophys Geod 40:9–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Burša.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burša, M., Kenyon, S., Kouba, J. et al. The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81, 103–110 (2007). https://doi.org/10.1007/s00190-006-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0091-3

Keywords

Navigation