Skip to main content

Advertisement

Log in

Methodology and use of tensor invariants for satellite gravity gradiometry

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balmino G, Barriot J, Koop R, Middel B, Thong NC, Vermeer M (1991) Simulation of gravity gradients: a comparison study. Bull Géod 65:218–229

    Article  Google Scholar 

  • Baur O, Grafarend EW (2006) High-performance GOCE gravity field recovery from gravity gradients tensor invariants and kinematic orbit information. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Heidelberg, pp 239–253

    Chapter  Google Scholar 

  • Baur O, Sneeuw N (2006) Slepian approach revisited: new studies to overcome the polar gap. ESA SP-627, Proceedings 3rd GOCE user Workshop, Frascati

  • Bölling K, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geod 79(6–7):300–330. doi:10.2007/s00190-005-0465-y

    Article  Google Scholar 

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Department of Geodetic Science, Report 310, Ohio State University, Columbus

    Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, New Jersey

    Google Scholar 

  • Eringen AC (1962) Nonlinear theory of continuous media. McGraw-Hill, New York

    Google Scholar 

  • ESA SP-1233 (1999) The four candidate Earth explorer core missions—gravity field and steady-state ocean circulation mission. European Space Agency Report SP-1233(1), Granada

  • van Gelderen M, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71(6):337–343, doi:10.2007/s001900050101

    Article  Google Scholar 

  • Grunsky H, Schur I (1968) Vorlesungen über Invariantentheorie. Springer, Heidelberg

    Google Scholar 

  • Gurevic GB (1964) Foundations of the theory of algebraic invariants. P. Noordhoff, Groningen

    Google Scholar 

  • Grafarend EW (1970) Die Genauigkeit eines Punktes im mehrdimensionalen Euklidischen Raum. Deutsche Geodätische Kommission, Series C 153, Munich

  • Hilbert D (1890) Über die Theorie der algebraischen Formen. Math Ann 36:473–534

    Article  Google Scholar 

  • Hilbert D (1893) Über die vollen Invariantensysteme. Math Ann 42:313–373

    Article  Google Scholar 

  • Holmes SA, Featherstone WE (2002a) A unified approach to the Clenshaw summation and the recursive computation of very-high degree and order normalised associated Legendre functions. J Geod 76(5):279–299, doi:10.1007/s00190-002-0216-2

    Article  Google Scholar 

  • Holmes SA, Featherstone WE (2002b) Extending simplified high-degree synthesis methods to second latitudinal derivatives of geopotential. J Geod 76(8):447–450, doi:10.1007/s00190-002-0268-3

    Article  Google Scholar 

  • Holota P (1989) Boundary value problems and invariants of the gravitational tensor in satellite gradiometry. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lect Notes Earth Sci, vol 25. Springer, Heidelberg, pp 447– 457

    Chapter  Google Scholar 

  • Ilk KH, Visser P, Kusche J (2003) Satellite gravity field missions. Final Report Special Commission 7, vol 32, General and technical reports 1999–2003

  • Klees R, Koop R, Visser P, van den IJssel J (2000) Efficient gravity field recovery from GOCE gravity gradient observations. J Geod 74(7–8):561–571, doi:10.2007/s001900000118

    Article  Google Scholar 

  • Klingbeil E (1966) Tensorrechnung für Ingenieure. BI Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers. Dover, New York

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center, Greenbelt, pp 575

  • Moritz H (1985) Inertia and gravitation in geodesy. In: Schwarz KP (ed) Inertial technology for surveying and geodesy

  • Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J Geod 76(8):462–474. doi:10.2007/s00190-002-0277-2

    Article  Google Scholar 

  • Pail R, Schuh W-D, Wermuth M (2005) GOCE gravity field processing. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Heidelberg, pp 36–41, doi:10.1007/3-540-26932-0_7

    Chapter  Google Scholar 

  • Petrovskaya MS, Vershkov AN (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames. J Geod 80(3):117–127, doi:10.2007/s00190-006-0031-2

    Article  Google Scholar 

  • Rapp RH, Cruz JY (1986) Spherical harmonic expansions of the Earth’s gravitational potential to degree 360 using 30′ mean anomalies. Ohio Sate University, Columbus, Report 376, Department of Geodetic Sciences and Surveying

    Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39(1):1–10. doi:10.1016/j.jog2004.07.001

    Article  Google Scholar 

  • Rummel R (1986) Satellite gradiometry. In: Sünkel H (ed) Mathematical and Numerical Techniques in Physical geodesy. Lect Notes Earth Sci, vol 7, Springer, Heidelberg, pp 317–363

    Chapter  Google Scholar 

  • Rummel R, Sansò F, van Gelderen M, Brovelli M, Koop R, Miggliaccio F, Schrama E, Scerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, p 39

  • Sacerdote F, Sansò F (1989) Some problems related to satellite gradiometry. Bull Géod 63:405–415

    Article  Google Scholar 

  • Schreiner M (1994) Tensor spherical harmonics and their application in satellite gradiometry. Doctoral Thesis, University of Kaiserslautern, p 386

  • Schuh W-D (1996) Tailored numerical solutions strategies for the global determination of the Earth’s gravity field. Mitteilungen der Universität Graz, p 81

  • Sneeuw N, van Gelderen M (1997) The polar gap. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lect Notes Earth Sci, vol 65. Springer, Heidelberg, pp 559–568

    Chapter  Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geodätische Kommission, Series C 527, Munich

  • Thông NC (1989) Simulation of gradiometry using the spheroidal harmonic model of the gravitational field. Manuscr Geod 14(6):404–417

    Google Scholar 

  • Vermeer M (1990) Observable quantities in satellite gradiometry. Bull Géod 64:347–361

    Article  Google Scholar 

  • Weitzenböck R (1923) Invariantentheorie. P. Noordhoff, Groningen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Baur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baur, O., Sneeuw, N. & Grafarend, E.W. Methodology and use of tensor invariants for satellite gravity gradiometry. J Geod 82, 279–293 (2008). https://doi.org/10.1007/s00190-007-0178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0178-5

Keywords

Navigation