Skip to main content
Log in

The international reference ionosphere today and in the future

  • Review
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth’s ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adewale AO, Oyeyemi EO, McKinnell LA (2009) Comparisons of observed ionospheric F2 peak parameters with IRI-2001 predictions over South Africa. J Atmos Solar Terr Phys 71(2): 273–284. doi:10.1016/j.jastp.2008.10.014

    Article  Google Scholar 

  • Altadill D, Arrazola D, Blanch E, Buresova D (2008) Solar activity variations of ionosonde measurements and modeling results. Adv Space Res 42: 610–616. doi:10.1016/j.asr.2007.07.028

    Article  Google Scholar 

  • Altadill D, Torta JM, Blanch E (2009) Proposal of new models of the bottom-side B0 and B1 parameters for IRI. Adv Space Res 43: 1825–1834. doi:10.1016/j.asr.2008.08.0144

    Article  Google Scholar 

  • Angling M, Shaw J, Shukla A, Cannon P (2009) Development of an HF selection tool based on the Electron Density Assimilative Model near-real-time ionosphere. Radio Sci 44: RS0A13. doi:10.1029/2008RS004022

    Article  Google Scholar 

  • Anthes RA, Ector D, Hunt DC, Kuo Y-H, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Wee T-K, Zeng Z, Bernhardt PA, Dymond KF, Chen Y, Liu H, Manning K, Randel WJ, Trenberth KE, Cucurull L, Healy SB, Ho S-P, McCormick C, Meehan TK, Thompson DC (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89: 313–333. doi:10.1175/BAMS-89-3-313

    Article  Google Scholar 

  • Araujo-Pradere EA, Fuller-Rowell TJ, Codrescu MV, Bilitza D (2005) Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity. Radio Sci 40: RS 5009. doi:10.1029/2004RS003179

    Article  Google Scholar 

  • Araujo-Pradere EA, Fuller-Rowell TJ, Spencer PSJ, Minter CF (2007) Differential validation of the US-TEC model. Radio Sci 42: RS3016. doi:10.1029/2006RS003459

    Article  Google Scholar 

  • Benson RF, Bilitza D (2009) New satellite mission with old data: rescuing a unique data set. Radio Sci 44: RS0A04. doi:10.1029/2008RS004036

    Article  Google Scholar 

  • Bent RB, Llewellyn SK, Schmid PE (1972) Description and evaluation of the Bent ionospheric model, vol 1–3. National Information Service, Springfield, Virginia AD-753-081,-082,-083

  • Bilitza D (1986) International reference ionosphere: recent developments. Radio Sci 21: 343–346

    Article  Google Scholar 

  • Bilitza D (1990) International reference ionosphere 1990, NSSDC/ WDC-A-R&S 90-22. National Space Science Data Center, Greenbelt

    Google Scholar 

  • Bilitza D (1995) Including auroral boundaries in the IRI model. Adv Space Res 16(1): 13–16

    Article  Google Scholar 

  • Bilitza D, Radicella S, Reinisch B, Adeniyi J, Mosert M, Zhang S, Obrou O (2000) New B0 and B1 models for IRI. Adv Space Res 25(1): 89–95

    Article  Google Scholar 

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2): 261–275

    Article  Google Scholar 

  • Bilitza D, Huang X, Reinisch B, Benson R, Hills HK, Schar WB (2004) Topside ionogram scaler with true height algorithm (TOPIST): automated processing of ISIS topside ionograms. Radio Sci 39(1): RS1S27. doi:10.1029/2002RS002840

    Article  Google Scholar 

  • Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4): 599–609. doi:10.1016/j.asr.2007.07.048

    Article  Google Scholar 

  • Brunini C, Van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res 108(A2): 1056. doi:10.1029/2002JA009346

    Article  Google Scholar 

  • Bust GS, Garner TW, Gaussiran TL II (2004) Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm. J Geophys Res 109: A11312. doi:10.1029/2003JA010234

    Article  Google Scholar 

  • CCIR (1966) Atlas of ionospheric characteristics. Report 340-1, 340-6. Comité Consultatif International des Radiocommunications, Genève, Switzerland. ISBN 92-61-04417-4

  • Cucurull L, Kuo Y-H, Barker D, Rizvi SRH (2006) Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: a case study COSMIC project. Mon Weather Rev 134: 3283–3296

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionospheric errors for the dual-frequency GPS user. Radio Sci 43: RS5010. doi:10.1029/2007RS003772

    Article  Google Scholar 

  • Dear R, Mitchell C (2006) GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe. Radio Sci 41: RS6007. doi:10.1029/2005RS003269

    Article  Google Scholar 

  • Depuev VH, Pulinets SA (2004) A global empirical model of the ionospheric topside electron density. Adv Space Res 34: 2016– 2020

    Article  Google Scholar 

  • Fernandez JR, Mertens CJ, Bilitza D, Xu X, Russell JM III, Mlynczak MG (2010) Feasibility of developing an ionospheric E-region electron density storm model using TIMED/SABER measurements. Adv Space Res 46(8): 1070–1077. doi:10.1016/j.asr.2010.06.008

    Article  Google Scholar 

  • Friedrich M, Torkar KM, Lehmacher GA, Croskey CL, Mitchell JD, Kudeki E, Milla M (2006) Rocket and incoherent scatter radar common-volume electron measurements of the equatorial lower ionosphere. Geophys Res Lett 33: L08807. doi:10.1029/2005GL024622

    Article  Google Scholar 

  • Fuller-Rowell TJ, Araujo-Pradere E, Codrescu MV (2000) An empirical ionospheric storm-time correction model. Adv Space Res 25(1): 139–146

    Article  Google Scholar 

  • Fuller-Rowell T, Araujo-Pradere E, Minter C, Codrescu M, Spencer P, Robertson D, Jacobsen A (2006) US-TEC: a new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci 41. doi:10.10292005RS003393

  • Garcia R, Crespon F (2008) Radio tomography of the ionosphere: analysis of an underdetermined, ill-posed inverse problem, and regional application. Radio Sci 43: RS2014. doi:10.1029/2007RS003714

    Article  Google Scholar 

  • Garner TW, Gaussiran TL II, Tolman BW, Harris RB, Calfas RS, Gallagher H (2008) Total electron content measurements in ionospheric physics. Adv Space Res 42(4): 720–726. doi:10.1016/j.asr.2008.02.025

    Article  Google Scholar 

  • Gulyaeva T (1987) Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv Space Res 7(6): 39–48

    Article  Google Scholar 

  • Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    Google Scholar 

  • Hernandez-Pajares M, Juan J, Sanz J, Bilitza D (2002) Combining GPS measurements and IRI model values for Space Weather specification. Adv Space Res 29(6): 949–958

    Article  Google Scholar 

  • Hocke K, Igarashi K (2002) Structure of the earth’s lower ionosphere observed by GPS/MET radio occultation. J Geophys Res 107(A5). doi:10.1029/2001JA900158

  • Huang X, Reinisch BW (2001) Vertical electron content from ionograms in real time. Radio Sci 36: 335–342

    Article  Google Scholar 

  • Huang X, Reinisch BW, Bilitza D, Benson RF (2002) Electron density profiles of the topside ionosphere. Ann Geophys 45(1): 125–130

    Google Scholar 

  • Huang X, Reinisch BW, Song P, Nsumei P, Green JL, Gallagher DL (2004) Developing an empirical density model of the plasmasphere using IMAGE/RPI observations. Adv Space Res 33: 829–832

    Article  Google Scholar 

  • IGRF (2010) International Geomagnetic Reference Field, Version 11. http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

  • Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33: L15108. doi:10.1029/2006GL026161

    Article  Google Scholar 

  • ISO (2009) Space environment (natural and artificial)—Earth’s ionosphere model: international reference ionosphere and extension to the plasmasphere. Technical Specification TS16457, International Standardization Organization, Geneva, Switzerland

  • Jackson JE (1969) The reduction of topside ionograms to electron-density profiles. Proc IEEE 57: 960–976

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 35–45

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–471

    Article  Google Scholar 

  • Komjathy A, Lagnley R, Bilitza D (1998) Ingesting GPS-derived TEC data into the international reference ionosphere for single frequency radar altimeter ionosphere delay corrections. Adv Space Res 22(6): 793–802

    Article  Google Scholar 

  • Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ (2010) JPL/USC GAIM: on the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res 115: A02307. doi:10.1029/2009JA014420

    Article  Google Scholar 

  • Kutiev I, Marinov P (2007) Topside sounder model of scale height and transition height characteristics of the ionosphere. Adv Space Res 39: 759–766. doi:10.1016/j.asr.2006.06.013

    Article  Google Scholar 

  • Kutiev IS, Marinov PG, Watanabe S (2006) Model of topside ionosphere scale height based on topside sounder data. Adv Space Res 37: 943–950. doi:10.1016/j.asr.2005.11.021

    Article  Google Scholar 

  • Lee JK, Kamalabadi F, Makela JJ (2008) Three-dimensional tomography of ionospheric variability using a dense GPS receiver array. Radio Sci 43: RS3001. doi:10.1029/2007RS003716

    Article  Google Scholar 

  • Llewellyn SK, Bent RB (1973) Documentation and description of the Bent ionospheric model. Report AFCRL-TR-73-0657, Hanscom AFB, MA

  • Lühr H, Hausler K, Stolle C (2007) Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys Res Lett 34: L16102. doi:10.1029/2007GL030639

    Article  Google Scholar 

  • McKinnell LA, Oyeyemi EO (2009) Progress towards a new global foF2 model for the international reference ionosphere (IRI). Adv Space Res 43: 1770–1775. doi:10.1016/j.asr.2008.09.035

    Article  Google Scholar 

  • McNamara LF, Retterer JM, Baker CR, Bishop GJ, Cooke DL, Roth CJ, Welsh JA (2010) Longitudinal structure in the CHAMP electron densities and their implications for global ionospheric modeling. Radio Sci 45: RS2001. doi:10.1029/2009RS004251

    Article  Google Scholar 

  • Mertens C, Winick J, Russell J III, Mlynczak M, Evans D, Bilitza D, Xu X (2007) Empirical storm-time correction to the international reference ionosphere model E-region electron and ion density parameterizations using observations from TIMED/SABER. Proc SPIE Remote Sens Clouds Atmos 12: 67451L. doi:10.1117/12.737318

    Google Scholar 

  • Niranjan K, Srivani B, Gopikrishna S, Rama Rao PVS (2007) Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the Pierce point altitude for GPS applications during low solar activity periods. J Geophys Res 112: A05304. doi:10.1029/2006JA011989

    Article  Google Scholar 

  • Nsumei P, Reinisch BW, Huang X, Bilitza D (2010) Empirical topside electron density model derived from ISIS satellite sounding data. J Earth Planets Space (submitted)

  • Orús R, Hernández-Pajares M, Juan JM, Sanz J, García-Fernández M (2002) Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Solar-Terr Phys 64(18): 2055–2062

    Article  Google Scholar 

  • Oyeyemi EO (2005) A global ionospheric F2 region peak electron density model using neural networks and extended geophysically relevant inputs. PhD thesis, Rhodes University, Grahamstown, South Africa

  • Oyeyemi EO, Poole AWV, McKinnell LA (2005) On the global model for foF2 using neural networks. Radio Sci 40: RS6011. doi:1029/2004RS003223

    Article  Google Scholar 

  • Oyeyemi EO, McKinnell LA, Poole AWV (2007) Neural network based prediction techniques for global modeling of M(3000)F2 ionospheric parameter. Adv Space Res 39(5): 643–650. doi:1016/j.asr.2006.09.038

    Article  Google Scholar 

  • Oyeyemi EO, McKinnell LA (2008) A new global F2 peak electron density model for the International Reference Ionosphere (IRI). Adv Space Res 42(4): 645–658. doi:10.1016/j.asr.2007.10.031

    Article  Google Scholar 

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12): 1468. doi:10.1029/2002JA009430

    Article  Google Scholar 

  • Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27(1): 35–40

    Article  Google Scholar 

  • Rawer K (1988) Synthesis of ionospheric electron density profiles with Epstein functions. Adv Space Res 8(4): 191–198

    Article  Google Scholar 

  • Rawer K, Bilitza D, Ramakrishnan S (1978) International reference ionosphere 78. Special Report, International Union of Radio Science (URSI), Brussels, Belgium

  • Reinisch BW, Huang X, Haines DM, Galkin IA, Green JL, Benson RF, Fung SF, Taylor WWL, Reiff PH, Gallagher DL, Bougeret J-L, Manning R, Carpenter DL, Boardsen SA (2001) First results from the radio plasma imager on IMAGE. Geophys Res Lett 28: 1167–1170

    Article  Google Scholar 

  • Reinisch BW, Huang X, Song P, Sales GS, Fung SF, Green JL, Gallagher DL, Vasyliunas VM (2001) Plasma density distribution along the magnetospheric field: RPI observations from IMAGE. Geophys Res Lett 28: 4521–4524

    Article  Google Scholar 

  • Reinisch BW, Huang X, Belehaki A, Shi J, Zhang ML, Ilma R (2004) Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements. Adv Space Res 34: 2026–2031. doi:10.1016/j.asr.2004.06.012

    Article  Google Scholar 

  • Reinisch BW, Nsumei P, Huang X, Bilitza DK (2007) Modeling the F2 topside and plasmasphere for IRI using IMAGE/RPI, and ISIS data. Adv Space Res 39: 731–738. doi:10.1016/j.asr.2006.05.032

    Article  Google Scholar 

  • Reinisch BW, Galkin I (2010) Global ionospheric radio observatory (GIRO). Earth Planets Space (submitted)

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New York

    Google Scholar 

  • Rush C, Fox M, Bilitza D, Davies K, McNamara L, Stewart F, PoKempner M (1989) Ionospheric mapping—an update of foF2 coefficients. Telecomm J 56: 179–182

    Google Scholar 

  • Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L (2006) Utah State University global assimilation of ionospheric measurements gauss-markov kalman filter model of the ionosphere: model description and validation. J Geophys Res 111: A11315. doi:10.1029/2006JA011712

    Article  Google Scholar 

  • Scherliess L, Thompson DC, Schunk RW (2008) Longitudinal variability of low-latitude total electron content: tidal influences. J Geophys Res 113: A01311. doi:10.1029/2007JA012480

    Article  Google Scholar 

  • Schmidt M, Bilitza D, Shum C, Zeilhofer C (2008) Regional 4-D modeling of the ionospheric electron density. Adv Space Res 42(4): 782–790. doi:10.1016/j.asr.2007.02.050

    Article  Google Scholar 

  • Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Anderson DN, Codrescu MV, Minter Cliff, Fuller-Rowell TJ, Heelis RA, Hairston M, Howe BM (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39: RS1S02. doi:10.1029/2002RS002794

    Article  Google Scholar 

  • Szuszczewicz E et al (1993) Measurements and empirical model comparisons of F-region characteristics and auroral boundaries during the solstial SUNDAIL campaign of 1987. Ann Geophys 11: 601–613

    Google Scholar 

  • Wang C, Hajj G, Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model. Radio Sci 39: RS1S06. doi:10.1029/2002RS002854

    Article  Google Scholar 

  • Zeilhofer C, Schmidt M, Bilitza D, Shum C (2009) Regional 4-D modeling of the ionospheric electron density from satellite data and IRI. Adv Space Res 43(11): 1669–1675. doi:10.1016/j.asr.2008.09.033

    Article  Google Scholar 

  • Zhang Y, Paxton LJ (2008) An empirical Kp-dependent global auroral model based on TIMED/GUVI data. J Atmos Solar-Terr Phys 70: 1231–1242. doi:10.1016/j.jastp.2008.03.008

    Article  Google Scholar 

  • Zhang Y, Paxton LJ, Bilitza D (2010) Near real-time assimilation of auroral peak E-region density and equatorward boundary in IRI. Adv Space Res 46(8): 1055–1063. doi:10.1016/j.asr.2010.06.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bilitza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilitza, D., McKinnell, LA., Reinisch, B. et al. The international reference ionosphere today and in the future. J Geod 85, 909–920 (2011). https://doi.org/10.1007/s00190-010-0427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0427-x

Keywords

Navigation