Skip to main content
Log in

Weighted total least squares: necessary and sufficient conditions, fixed and random parameters

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A standard errors-in-variables (EIV) model refers to a Gauss–Markov model with an uncertain model matrix from a geodetic perspective. Least squares within the EIV model is usually called the total least squares (TLS) technique because of its symmetrical adjustment. However, the solutions and computational advantages of the weighted TLS problem with a general weight matrix (WTLS) are mostly unknown. In this study, the WTLS problem was solved using three different approaches: iterative methods based on the normal equation, the iteratively linearized Gauss–Helmert model with algebraic Jacobian matrices, and numerical analysis. Furthermore, sufficient conditions for WTLS optimization were investigated systematically as proposed solutions yield only necessary conditions for optimality. A WTLS solution was considered to treat random parameters within the EIV model. Last, applications to test these novel algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adcock R (1877) Note on the method of least squares. Analyst 4:183–184

    Article  Google Scholar 

  • Akyilmaz O (2007) Total least squares solution of coordinate transformation. Survey Rev 39(303):68–80

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge university press, Cambridge

    Google Scholar 

  • Björck A, Heggernes P, Matstoms P (2000) Methods for large scale total least-squares problems. SIAM J Matrix Anal Appl 22(2): 413–429

    Google Scholar 

  • Cook JR, Stefanski LA (1994) Simulation-extrapolation estimation in parametric measurement error models. J Am Stat Assoc 89:1314–1328

    Article  Google Scholar 

  • Fang X (2011) Weighted total least squares solutions for applications in geodesy. Leibniz University Hannover, Nr, PHD Dissertation 294

  • Fang X, Kutterer H (2012) On the weighted total least squares solutions. In: Kutterer H, Seitz F (eds) The 1st International Workshop on the quality of geodetic observation and monitoring systems, Munich, Germany. Springer, Berlin (Accepted)

  • Felus F (2004) Application of total least squares for spatial point process analysis. J Surv Eng 130(3):126–133

    Article  Google Scholar 

  • Felus Y, Schaffrin B (2005) Performing similarity transformations using the errors-in-variables-model. In: Proceedings of the ASPRS Meeting, Washington, DC, May 2005, on CD

  • Felus F, Burtch R (2009) On symmetrical three-dimensional datum conversion. GPS Solut 13(1):65–74

    Article  Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York

    Book  Google Scholar 

  • Golub G, Van Loan C (1980) An analysis of the total least-squares problem. SIAM J Numer Anal 17(6):883–893

    Article  Google Scholar 

  • Grafarend E, Schaffrin B (1993) Ausgleichungsrechnung in linearen Modellen. Mannheim, BI-Wissenschaftsverlag (in German)

  • Grafarend E, Awange JL (2012) Applications of Linear and Nonlinear Models. Fixed effects, random effects, and total least squares. Springer, Berlin

    Book  Google Scholar 

  • Helmert FR (1872) Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate: mit Anwendungen auf die Geodäsie und die Theorie der Messinstrumente. Verlag Teubner, Leipzig (in German)

  • Koch K (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Book  Google Scholar 

  • Lenzmann L, Lenzmann E (2004) Rigorous adjustment of the nonlinear Gauss Helmert Model. Allgemeine Vermessungs-Nachrichten 111:68–73 (in German)

    Google Scholar 

  • Lenzmann L, Lenzmann E (2007) Zur Lösung des nichtlinearen Gauss-Markov-Modells. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 132:108–120 (in German)

    Google Scholar 

  • Mahboub V (2012) On weighted total least-squares for geodetic transformations. J Geod 86(5):359–367

    Article  Google Scholar 

  • Mahboub V (2013) Discussion of ”An improved weighted total least squares method with applications in linear fitting and coordinate transformation” by Xiaohua Tong; Yanmin Jin; and Lingyun Li. J Surv Eng. doi: 10.1061/(ASCE)SU.1943-5428.0000087

  • Mahboub V, Sharifi MA (2013) On weighted total least-squares with linear and quadratic constraints. J Geodesy. doi:10.1007/s00190-012-0598-8

  • Markovsky I, Rastello M, Premoli A, Kukush A, van Huffel S (2006) The element-wise weighted total least-squares problem. Comput Stat Data Anal 50:181–209

    Article  Google Scholar 

  • Markovsky I, Van Huffel S (2007) Overview of total least-squares methods. Signal Process 87(10):2283–2302

    Article  Google Scholar 

  • Neitzel F, Petrovic S (2008) Total Least Squares (TLS) im Kontext der Ausgleichung nach kleinsten Quadraten am Beispiel der Ausgleichenden Geraden. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 133:141–148 (in German)

    Google Scholar 

  • Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geod 84:751–762

    Article  Google Scholar 

  • Neri F, Saitta G, Chiofalo S (1989) An accurate and straightforward approach to line regression analysis of error-affected experimental data. J Phys Ser E Sci Instr 22:215–217

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin

    Google Scholar 

  • Pope A (1972) Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th Annual Meeting of the American Society of Photogrammetry. Waschington, DC, pp 449–473

  • Paláncz B, Awange JL (2012) Application of Pareto optimality to linear models with errors-in-all-variables. J Geod 86(7):531–545

    Article  Google Scholar 

  • Polzehl J, Zwanzig S (2003) On a comparison of different simulation extrapolation estimators in linear errors-in-variables models. U.U.D.M. Report 2003:17

  • Prószyński W (2012) An approach to response-based reliability analysis of quasi-linear errors-in-variables models. J Geod. doi:10.1007/s00190-012-0590-3

  • Schaffrin B (1983) Varianz-Kovarianz-Komponenten-Schätzung bei der Ausgleichung heterogener Wiederholungsmessungen. München: Deutsche Geodätische Kommission 282 (in German)

  • Schaffrin B, Felus Y (2005) On total Least-Squares adjustment with constraints. In: Sanso F (ed) A Window on the future of Geodesy, vol 128. International Association of Geodesy Symposia, Springer, Berlin, pp 175–180

  • Schaffrin B (2007) Connecting the dots: the straight-line case revisited. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 132:385–394

    Google Scholar 

  • Schaffrin B, Felus Y (2008) On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J Geod 82:373–383

    Article  Google Scholar 

  • Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geod 82:415–421

    Article  Google Scholar 

  • Schaffrin B, Felus Y (2009) An algorithmic approach to the total least-squares problem with linear and quadratic constraints. Studia Geophysica et Geodaetica 53(1):1–16

    Article  Google Scholar 

  • Schaffrin B (2009) TLS collocation: the Total Least Squares Approach to EIV-Models with stochastic prior information. Presented at the 18th International Workshop on Matrices and Statistics, Smolenice Castle, Slovakia, June 2009

  • Schaffrin B, Snow K (2010) Total least-squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra Appl 432:2061–2076

    Article  Google Scholar 

  • Schaffrin B, Wieser A (2011) Total least-squares adjustment of condition equation. Studia Geophysica et Geodaetica 55(3):529–536

    Article  Google Scholar 

  • Schaffrin B, Neitzel F, Uzun S, Mahboub V (2012) Modifying Cadzow’s algorithm to generate the optimal TLS-solution for the structured EIV-Model of a similarity transformation. J Geod Sci 2:98–106

    Google Scholar 

  • Schuermans M, Markovsky I, Van Huffel S (2007) An adapted version of the element-wise weighted total least squares method for applications in chemometrics. Chemom Intell Lab Syst 85:40–46

    Google Scholar 

  • Shen Y, Li BF, Chen Y (2010) An iterative solution of weighted total least-squares adjustment. J Geod 85:229–238

    Google Scholar 

  • Snow K (2012) Topics in total least-squares adjustment within the errors-in-variables model : singular cofactor matrices and priori information. PhD Dissertation, report No, 502, Geodetic Science Program, School of Earth Sciences, The Ohio State University, Columbus

  • Van Huffel S, Vandewalle J (1991) The total least-squares problem. Computational aspects and analysis. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Xu PL (2004) Determination of regional stress tensors from fault-slip data. Geophys J Int 157:1316–1330

    Article  Google Scholar 

  • Xu PL, Liu JN, Shi C (2012) Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J Geod 86(8):661–675

    Article  Google Scholar 

Download references

Acknowledgments

The research work presented in this paper was conducted during my doctoral studies at the Leibniz University Hanover in Germany. I am grateful to Professor Hansjörg Kutterer for his guidance and helpful comments. Particularly, I would like to acknowledge Prof. Burkhard Schaffrin from the Ohio State University for his valuable research on TLS and critical comments related to my previous work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Fang.

Appendix: Second derivative of the WTLS optimality

Appendix: Second derivative of the WTLS optimality

In order to obtain sufficient conditions of the WTLS optimality, the second derivative of the unconstrained WTLS objective function is required, analytically. Furthermore, based on the second derivative, one can design the Newton method for the WTLS problem.

According to the calculated first derivative, the second derivative is organized in two parts as follows:

$$\begin{aligned}&\frac{\partial ^{2}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_k \partial \varvec{\upxi }_j}\\&\quad =-2\frac{\partial \mathbf{a}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_{j}}\ldots \\&\qquad -2\frac{\partial \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_{k}^{T} \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_j} \end{aligned}$$

The first part of the equation above can be analytically formulated by

$$\begin{aligned}&-2\frac{\partial \mathbf{a}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_j }\\&\quad =-2\mathbf{a}_k^T \frac{\partial \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}}{\partial \varvec{\upxi }_j }\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&\qquad -2\mathbf{a}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\frac{\partial \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_j }\\&\quad =2\mathbf{a}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_j \mathbf{B}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \\&\qquad {\times } \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) +2\mathbf{a}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\\&\qquad {\times } \mathbf{BQ}_j^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&\qquad +2\mathbf{a}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{a}_j , \end{aligned}$$

and second part is presented as

$$\begin{aligned}&-2\frac{\partial \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_{k}^{T} \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_{j}} \\&=-2\frac{\partial \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}}{\partial \varvec{\upxi }_j }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \mathbf{BQ}_k^T \\&\quad {\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&\quad -2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \mathbf{BQ}_k^T\\&\quad {\times } \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\frac{\partial \left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }_j } \\&\quad -2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\frac{\partial \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}}{\partial \varvec{\upxi }_j } \mathbf{BQ}_k^T \\&\quad {\times } \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&\quad -2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T\\&\quad {\times }\frac{\partial \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}}{\partial \varvec{\upxi }_j }\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&\quad -2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\frac{\partial \mathbf{BQ}_k^T }{\partial \varvec{\upxi }_j }\\&\quad {\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&= 2\mathbf{a}_{j}^{T} \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_{k}^{T} \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{a}_j\ldots \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_j \mathbf{B}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T\\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_j^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T \\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_{k}^{T}\\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_j \mathbf{B}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_j^T \\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&-2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_{kj}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&= 2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_k \mathbf{B}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{a}_j\\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{a}_{j}\ldots \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_k \mathbf{B}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_j^T \\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_k \mathbf{B}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_j \mathbf{B}^{T}\\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_j \mathbf{B}^{T}\\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&+2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_k^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{BQ}_j^T\\&{\times }\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \\&-2\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{Q}_{kj}^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) \end{aligned}$$

In the last step the property introduced in Eq. (37) and the property of the transposed scalar are used. Thus, combining the solved equations of first and second part, the Hessian matrix is given as follows:

$$\begin{aligned} \mathbf{H}&= \frac{\partial ^{2}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) }{\partial \varvec{\upxi }\partial \varvec{\upxi }^{T}} \\&= 2\mathbf{A}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{A}^{*}+2\mathbf{A}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \mathbf{A}^{**}\\&+2\mathbf{A}^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{A} +2\left( {\mathbf{A}^{**}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \mathbf{A}\\&+2\left( {\mathbf{A}^{*}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \mathbf{A}\\&+2\left( {\mathbf{A}^{**}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{A}^{**} \\&+2\left( {\mathbf{A}^{**}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{A}^{*} \\&+2\left( {\mathbf{A}^{*}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1} \mathbf{A}^{*}\\&+2\left( {\mathbf{A}^{*}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\mathbf{A}^{**}-2\left[ {\varpi _{kj} } \right] \\&= 2\left( {\mathbf{A}+\mathbf{A}^{*}+\mathbf{A}^{**}} \right) ^{T}\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\\&\left( {\mathbf{A}+\mathbf{A}^{*}+\mathbf{A}^{**}} \right) -2\left[ {\varpi _{kj} } \right] \end{aligned}$$

with \(\varpi _{kj} =(\mathbf{y}-{\mathbf{A}\varvec{\upxi }} )^{T}({\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}})^{-1}\mathbf{Q}_{kj} ({\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}})^{-1}(\mathbf{y}-{\mathbf{A}\varvec{\upxi }})\) and

$$\begin{aligned} {\mathbf{A}}^{**}&= \left[ \mathbf{BQ}_1^T \left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) ,\ldots ,\mathbf{BQ}_u^{T} \right. \\&\left. {\left( {\mathbf{BQ}_{\mathbf{ll}} \mathbf{B}^{T}} \right) ^{-1}\left( \mathbf{y}-{\mathbf{A}\varvec{\upxi }} \right) } \right] . \end{aligned}$$

Note that \(\mathbf{A}^{**}=\mathbf{A}^{*}\) unless \(\mathbf{Q}_{kj}^{T} =\mathbf{Q}_{kj}\) for any k and j.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X. Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. J Geod 87, 733–749 (2013). https://doi.org/10.1007/s00190-013-0643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-013-0643-2

Keywords

Navigation