Skip to main content
Log in

Estimated SLR station position and network frame sensitivity to time-varying gravity

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree \(4\times 4\) coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993–2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008–2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 \(50\times 50\) series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution for the terrestrial reference frame. J Geod 85:457–473. doi:10.1007/s00190-001-0444-4

    Article  Google Scholar 

  • Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14608. doi:10.1029/2007GL030002

  • Bertiger W, Desai S, Dorsey A, Haines BJ, Harvey N, Kuang D, Sibthorpe A, Weiss JP (2010) Sub-centimeter precision orbit determination with GPS for ocean altimetry. Mar Geod 33(1). doi:10.1080/01490419.2010.487800

  • Bettadpur S (2012) UTCSR Level-2 processing standards document (For Level-2 Product Release 0005), GRACE (CSR-GR-12-xx), University of Texas at Austin, Austin, pp 327–742. ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7). doi:10.1029/2001JB000570

  • Bouille F, Cazenave A, Lemoine JM et al (2000) Geocentre motion from the DORIS system and laser data to the LAGEOS satellites: comparison with surface loading data. Geophys J Int 143(1):71–82. doi:10.1046/j.1365-246x.2000.01196.x

    Article  Google Scholar 

  • Bruinsma S, Lemoine JM, Biancale R et al (2010) CNES/GRGS 10-day gravity field models (release 02) and their evaluation. Adv Space Res 45(4):587–601. doi:10.1016/j.asr.2009.10.012

    Google Scholar 

  • Cerri L, Berthias J, Bertiger W et al (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33(1):379–418. doi:10.1080/01490419.2010.488966

    Google Scholar 

  • Cerri L, Lemoine JM, Mercier F, Zelensky NP, Lemoine FG (2013) DORIS-based point mascons for the long term stability of precise orbit solutions. Space Res Adv. doi:10.1016/j.asr.2013.03.023

  • Chao BF, Au AY, Boy JP, Cox CM (2003) Time-variable gravity signal of an anomalous redistribution of water mass in the extratropic Pacific during 1998–2002. Geochem Geophys Geosyst 4(1096). doi:10.1029/2003GC000589

  • Chen JL, Wilson CR, Eanes RJ et al (1999) Geophysical interpretation of geocenter variations. J Geophys Res 104(B2):2683–2690. doi:10.1029/1998JB900019

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862. doi:10.1038/NGEO694

    Article  Google Scholar 

  • Cheng MK, Ries JC, Tapley BD (2011) Variations in the figure axis from satellite laser ranging and GRACE. J Geophys Res 116(B01409). doi:10.1029/2010JB000850

  • Cheng MK, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res Solid Earth 118:1–8. doi:10.1002/jgrb.50058

    Google Scholar 

  • Christodoulidis DC, Smith ES (1981) Prospects for TLRS baseline accuracies in the Western USA using LAGEOS, NASA Technical Memorandum 82133, GSFC (1981)

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B04402). doi:10.1029/2008JB005727

  • Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86(1):1–14. doi:10.1007/s00190-011-0487-6

    Article  Google Scholar 

  • Couhert A, Cerri L, Mercier F, Houry S (2012) Jason-1 and Jason-2 POD status, Ocean Surface Topography Science Team Meeting, Venice (2012). http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2012/oral/02_28/03_POD_I/02_POD1_Couhert.pdf

  • Coulot D, Berio P, Bonnefond P et al (2008) Satellite laser ranging biases and terrestrial reference frame scale factor, in observing our changing planet. International Association of Geodesy Symposia, vol. 133, pp. 39–46. Springer, New York. doi:10.1007/978-3-540-85426-5

  • Cox CM, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297(5982):831–833. doi:10.1126/science.1072188

    Article  Google Scholar 

  • Dahle C, Flechtner F, Gruber C et al (2013) GFZ GRACE Level-2 processing standards document for level-2 product release 0005. Scientific Technical Report STR12/02—data, revised edition, Potsdam. doi:10.2312/GFZ.b103-1202-25

  • Davis JL, Elosequi P, Mitrovica JX, Tamisiea ME (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31(24), Art. No. L24605. doi:10.1029/2004GL021435

  • Flechtner F et al (2007) AOD1B Product Description Document for Product Releases 01 to 04, GFZ internal report, Rev. 3.1. http://op.gfz-potsdam.de/grace/results/grav/AOD1B_PDD_20070413.pdf

  • Förste C, Schmidt R, Stubenvoll R et al (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Géodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6):331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Förste C, Bruinsma S, Shako R et al (2011) EIGEN-6: a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse, Ocean Surface Topography Science Team Meeting, San Diego. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2011/oral/02_Thursday/Splinter%202%20GEO/01%20OSTST-Biancale.pdf

  • Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformation of the Earth’s crust from continental water mass and atmospheric pressure variations using GPS, Journal of Geodynamics, Volumes 59–60, September 2012. ISSN 133–142:0264–3707. doi:10.1016/j.jog.2011.04.001

    Google Scholar 

  • Goiginger H, Rieser D, Mayer-Gürr T et al (2011) The combined satellite-only global gravity field model GOCO02S, Geophysical Research Abstracts, 13, EGU2011-10,571. http://www.goco.eu/data/egu2011-10571-goco02s.pdf

  • Govind R, Lemoine F, Zelensky N, Luthcke S (2007) Evaluating the effect of atmospheric gravity and the annual gravity field variation on lageos orbits. ILRS Fall Workshop, Grasse. http://www-g.oca.eu/gemini/ecoles_colloq/colloques/ilrs2007/PresentationsPdf/2_Session.pdf/2.4_Govind_GravityVariations_and_Lageos.pdf

  • Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag HP, Pearlman M (eds) The global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020, Geoscience Books. Springer, Berlin, pp 209–224. ISBN 978-3-642-02687-4. http://iag.dgfi.badw.de/fileadmin/IAG-docs/GGOS2020_REF_DOC_V0_18.pdf

  • Kaula WM (1966) Theory of satellite geodesy. Dover Publ. Inc., Mineola

    Google Scholar 

  • Klinker E, Rabier FG et al (2000) The ECMWF operational implementation of four dimensional variational assimilation. Part III: experimental results and diagnostics with operational configuration. Q J R Meteorol Soc 126:1191. doi:10.1002/qj.49712656417

    Article  Google Scholar 

  • Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites, in: Proceedings of the AIAA/AAS astrodynamics conference, Minneapolis, pp 577–586

  • Koenig R, Vei M (2012) On the effect of atmospheric loading and mass variations on a geocenter time series from 30 years of LAGEOS SLR data, EGU General Assembly 2012, Poster No. EGU2012-9164

  • Landerer F, Jungclaus JH, Marotzke J (2008) El Nino-Southern Oscillation signals in sea level, surface mass redistribution, and degree-two geoid coefficients. J Geophys Res Oceans 113(C8):C08014. doi:10.1029/2008JC004767

    Article  Google Scholar 

  • Le Bail K, Lemoine FG, Chinn DS (2010) GSFC DORIS contribution to ITRF2008. Adv Space Res 45(12):1481–1499. doi:10.1016/j.asr.2010.01.030

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK et al (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96, NASA/TP-1998-206861: NASA Goddard Space Flight Center, Greenbelt

  • Lemoine FG, Klosko SM, Cox CM, Johnson TJ (2006) Time-variable gravity from SLR and DORIS tracking. 15th International workshop on laser ranging, Canberra. http://cddis.gsfc.nasa.gov/lw15/

  • Lemoine FG, Zelensky NP, Chinn DS et al (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46(12):1513–1540. doi:10.1016/j.asr.2010.05.007

    Article  Google Scholar 

  • Lemoine FG, Zelensky NP, Melachroinos S, Chinn DS, Beckley BD, Rowlands DD, Luthcke SB (2011) GSFC OSTM (Jason-2), Jason-1 and TOPEX POD Update, Ocean Surface Topography Science Team Meeting, San Diego. http://www.aviso.oceanobs.com/en/courses/sci-teams/ostst-2011/ostst-2011-presentations.html

  • Lemoine FG, Zelensky NP, Melachroinos S, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Ray RD, Luthcke SB (2012) Improved orbit standards for altimeter satellite POD at GSFC, Ocean Surface Topography Science Team Meeting, Venice (Update) http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2012/oral/02friday28/03PODI/03POD1lemoine.pdf

  • Luthcke SB, Rowlands DD, Lemoine FG et al (2006) Monthly spherical harmonic gravity field solutions determined from GRACE intersatellite range-rate data alone. Geophys Res Lett 33(2):L02402. doi:10.1029/2005Gl024846

  • Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J Glac (in press)

  • Matsuo K, Chao BF, Otsubo T, Heki K (2013) Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophys Res Lett 40:4662–4667. doi:10.1002/grl.50900

    Google Scholar 

  • McCarthy DD, Petit G (eds), IERS Conventions (2003) IERS Tech. Note, vol 32. Verlag des Bundesamts für Kartogr. und Geod., Frankfurt am Main

  • Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Bordyugov O (2012) The effect of geocenter motion on Jason-2 orbits and the mean sea level. Adv Space Res. doi:10.1016/j.bbr.2011.03.031

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31(14):L14602. doi:10.1029/2004GL020308

    Article  Google Scholar 

  • Métivier L, Greff-Lefftz M, Altamimi Z (2010) On secular geocenter motion: the impact of climate changes. Earth Planet Sci Lett 296(3–4):360–366. doi:10.1016/j.epsl.2010.05.021

    Article  Google Scholar 

  • Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from Topex/Poseidon altimetric data. Adv Space Res 36:358–368. doi:10.1016/j.asr.2005.05.113

    Article  Google Scholar 

  • Nerem RS, Wahr J (2011) Recent changes in the Earth’s oblateness driven by Greenland and Antarctic ice mass loss. Geophys Res Lett 38(13). doi:10.1029/2011GL047879

  • Noll C (2010) The crustal dynamics data information system: a resource to support scientific analysis using space geodesy. Adv Space Res 45(12):1421–1440. doi:10.1016/j.asr.2010.01.018

    Article  Google Scholar 

  • Pavlis DE, Wimert J, McCarthy JJ (2013) GEODYN II systems description. Stinger Ghaffarian Technologies, Greenbelt

    Google Scholar 

  • Pavlis EC (1999) Fortnightly resolution geocenter series: a combined analysis of LAGEOS 1 and 2 SLR data (1993–96). In: Ray J (ed) IERS Tech. Note 25, IERS, Observatoire de Paris, Paris, pp 75–84. http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn25.html

  • Pavlis, Kuźmicz-Cieślak (2008) Geocenter motion: causes and modeling approaches. 16\(^{th}\) international workshop on laser ranging, Poznan Poland. http://cddis.gsfc.nasa.gov/lw16/

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B (eds), IERS Conventions (2010) IERS Tech. Note, vol 36. Verlag des Bundesamts für Kartogr. und Geod., Frankfurt am Main

  • Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405. doi:10.1029/2003JB002500

    Google Scholar 

  • Ray RD (1999) A global ocean tide model from TOPEX/Poseidon altimetry: GOT99.2, NASA TM-1999-209478, NASA Goddard Space Flight Center (Update)

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910. doi:10.5194/angeo-21-1897-2003

    Article  Google Scholar 

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions 12(1):55–64. doi:10.1007/s10291-007-0067-7

    Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monagha A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011GL046583

  • Rosborough GW, Satellite orbit perturbations due to the geopotential, CSR-86-1, PhD dissertation. Center for Space Research, The University of Texas at Austin

  • Sosnica K, Thaller D, Jäggi A, Dach R, Beutler G (2012) Sensitivity of LAGEOS orbits to global gravity field models. Artif Satellites 47(2). doi:10.2478/v10018-012-0013-y

  • Schwatke C, (2012) EUROLAS Data Center (EDC)—a new website for tracking the SLR data flow. EGU General Assembly 2012, Vienna, p 7861. http://edc.dgfi.badw.de

  • Tapley BD, Rosborough GW (1985) Geographically correlated orbit error and its effect on satellite altimetry missions. J Geophys Res 90:11817–11831. doi:10.1029/JC090iC06p11817

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S et al (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8):467–478. doi:10.1007/s00190-005-0480-z

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 Mean Earth Gravity Model from GRACE. Eos Trans AGU 88(52) (Fall Meet. Suppl., Abstract G42A-03). http://www.csr.utexas.edu/grace/gravity

  • Tregoning P, vanDam TM (2005) Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geophys Res 110:3408. doi:10.1029/2004JB003334

    Article  Google Scholar 

  • Ullman R (1997) SOLVE program mathematical formulation, Rep. HSTXG G-9201. update to http://ggsghpcc.sgt-inc.com/pub/jmccarth/solve/SolveMathDoc.pdf

  • van Dam T, Wahr J, Milly PCD et al (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654. doi:10.1029/2000GL012120

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Watkins M, Yuan DN (2012) JPL Level-2 Processing Standards Document for Level-2 Product Release 05. GRACE Document, pp 327–744. ftp://podaac.jpl.nasa.gov/allData/grace/docs

  • Wu X, Collilieux X, Altamimi Z, Vermeersen BLA, Gross R, Fukumori I (2011) Accuracy of the international terrestrial reference frame origin and Earth expansion. Geophys Res Lett 38:L13304. doi:10.1029/2011GL047450

    Google Scholar 

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61, ISSN 0264–3707. doi:10.1016/j.jog.2012.01.007

    Google Scholar 

  • Zelensky NP, Lemoine FG, Ziebart M et al (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46(12):1541–1558. doi:10.1016/j.asr.2010.05.008

    Article  Google Scholar 

  • Zelensky NP, Lemoine FG, Chinn DS et al (2011) Time varying gravity modeling for precise orbits across the TOPEX/Poseidon, Jason-1 and Jason-2 Missions, POD Splinter poster 2011 OSTST, San Diego. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2011/poster/zelensky_pod5.pdf

Download references

Acknowledgments

We acknowledge the International Laser Ranging Service (ILRS) for its support and leadership in providing satellite laser ranging data (Pearlman et al. 2002). Many thanks to Dave Rowlands and Scott Luthcke of NASA/GSFC and Mark Torrence of SGT for the useful discussions. We thank the three anonymous reviewers for their very constructive help evaluating this paper. This research was supported by the U.S. National Aeronautics and Space Administration (NASA) under the program “IDS Program in Mean Sea Level.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita P. Zelensky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 73 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelensky, N.P., Lemoine, F.G., Chinn, D.S. et al. Estimated SLR station position and network frame sensitivity to time-varying gravity. J Geod 88, 517–537 (2014). https://doi.org/10.1007/s00190-014-0701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0701-4

Keywords

Navigation