Skip to main content
Log in

Mapping topside ionospheric vertical electron content from multiple LEO satellites at different orbital altitudes

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In this paper, we present an approach to generating a global topside ionospheric map (GTIM) using dual-frequency global positioning system (GPS) data from multiple low Earth orbit (LEO) satellites at different orbital altitudes. NeQuick2 is employed to normalize LEO data to the same observation range, and 13 LEO satellites from 2015/01/01 to 2015/09/27 are used to generate GTIM-500 (with an ionospheric range from 500 km to 20,200 km) and GTIM-800 (with an ionospheric range from 800 km to 20,200 km). First, we use the coinciding pierce point technique to study the error induced by altitude normalization. The results show that the relative bias error is approximately 1%. Then, the performance and accuracy of the GTIMs as well as the differential code bias (DCB) of GPS receivers onboard LEO and GPS satellites are compared and analyzed. The statistical results of the differences between the official LEO-DCB products and the LEO-DCBs estimated by our different solutions show a RMS improvement of 23% and 41% for GTIM-500 and GTIM-800, respectively. The improvement in RMS of GPS-DCBs for the proposed method is approximately 20%. Finally, the accuracy of GTIM is evaluated by the dSTEC assessment method. The results show that the RMS of GTIM-500 is 0.50 TECU (total electron content unit) for both methods. In terms of GTIM-800 estimated by the proposed method, the RMS has an improvement of 24%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Baarda W (1973) S-transformations and criterion matrices. In: Publications on geodesy, 18, Netherlands Geodetic Commission, Delft, The Netherland, vol 5, no 1

  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang BS (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15:418–429

    Article  Google Scholar 

  • Buckreuss S, Werninghaus R, Pitz W (2008) The German satellite mission TerraSAR-X. In: 2008 IEEE Radar conference, p. 1–5

  • Chen P, Yao Y, Li Q, Yao W (2017) Modeling the plasmasphere based on LEO satellites onboard GPS measurements. Journal of Geophysical Research: Space Physics 122:1221–1233

    Google Scholar 

  • Chen J, Ren X, Zhang X, Zhang J, Huang L (2020) Assessment and validation of three ionospheric models (IRI-2016, NeQuick2, and IGS-GIM) From 2002 to 2018. Space Weather, 18, e2019SW002422

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geodesy 81:111–120

    Article  Google Scholar 

  • Clerbaux C, Boynard A, Clarisse L, George M, Hadji-Lazaro J, Herbin H, Hurtmans D, Pommier M, Razavi A, Turquety S, Wespes C, Coheur PF (2009) Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos Chem Phys 9:6041–6054

    Article  Google Scholar 

  • Coïsson P, Radicella SM, Leitinger R, Nava B (2006) Topside electron density in IRI and NeQuick: features and limitations. Adv Space Res 37:937–942

    Article  Google Scholar 

  • Darrouzet F, De Keyser J, Pierrard V (eds) (2009) The Earth’s plasmasphere: a cluster and IMAGE perspective, Springer, New York, ISBN: 978-1-4419-1322-7

  • Foelsche U, Kirchengast G (2002) A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys Res Lett 29:111–114

    Article  Google Scholar 

  • Fong C-J, Yen NL, Chu C-H, Yang S-K, Shiau W-T, Huang C-Y, Chi S, Chen S-S, Liou Y-A, Kuo Y-H (2009) FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission. Terrestrial Atmospheric and Oceanic Sciences 20:1–19

    Article  Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth, Planets and Space 58:351–358

    Article  Google Scholar 

  • Gulyaeva T (2003) International standard model of the Earth’s inosphere and plasmasphere. Astronomical & Astrophysical Transactions 22:639–643

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83:263–275. https://doi.org/10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy 91:1405–1414

    Article  Google Scholar 

  • Hwang C, Tseng T-P, Lin T-J, Švehla D, Hugentobler U, Chao BF (2010) Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solutions 14:121–131

    Article  Google Scholar 

  • Lee S (2010) Overview of KOMPSAT-5 program, mission, and system. In: 2010 IEEE international geoscience and remote sensing symposium, pp 797–800

  • Lemaire J, Gringauz KI (1998) The Earth’s plasmapause. Cambridge University Press, New York

    Google Scholar 

  • Li Z, Yuan Y, Fan L, Huo X, Hsu H (2013) Determination of the differential code bias for current BDS satellites. IEEE Trans Geosci Remote Sens 52(7):3968–3979

    Article  Google Scholar 

  • Li Z, Wang N, Hernández-Pajares M et al (2020) IGS real-time service for global ionospheric total electron content modeling. J Geodesy 94:32

    Article  Google Scholar 

  • Lin J, Yue X, Zhao S (2016) Estimation and analysis of GPS satellite DCB based on LEO observations. GPS Solutions 20:251–258

    Article  Google Scholar 

  • Liu A, Wang N, Li Z, Wang Z, Yuan H (2019) Assessment of NeQuick and IRI-2016 models during different geomagnetic activities in global scale: comparison with GPS-TEC, dSTEC, Jason-TEC and GIM. Adv Space Res 63:3978–3992

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science 33:565–582

    Article  Google Scholar 

  • Montenbruck O, Kroes R (2003) In-flight performance analysis of the champ blackjack gps receiver. GPS Solutions 7(2):74–86

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navig J Inst Navig 61(3):191–201

    Article  Google Scholar 

  • Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Solar Terr Phys 70:1856–1862

    Article  Google Scholar 

  • Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJ (2016) On the estimability of parameters in undifferenced, uncombined GN network and PPP-RTK user models by means of S-system theory. J Geod 90(1):15–44

    Article  Google Scholar 

  • Orús R, Hernández-Pajares M, Juan JM, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atmos Solar Terr Phys 67:1598–1609

    Article  Google Scholar 

  • Ren X, Zhang X, Xie W, Zhang K, Yuan Y, Li X (2016) Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo. GLONASS and GPS. Scientific Reports 6:33499

    Article  Google Scholar 

  • Ren X, Chen J, Li X, Zhang X, Freeshah M (2019) Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers. GPS Solutions 23:113

    Article  Google Scholar 

  • Ren X, Chen J, Li X, Zhang X (2020) Multi-GNSS contributions to differential code biases determination and regional ionospheric modelling in China. Adv Space Res 65:221–234

    Article  Google Scholar 

  • Rich FJ, Sultan PJ, Burke WJ (2003) The 27-day variations of plasma densities and temperatures in the topside ionosphere. J Geophys Res Space Phys 108:1297

    Article  Google Scholar 

  • Rideout W, Coster A (2006) Automated GPS processing for global total electron content data. GPS Solutions 10:219–228

    Article  Google Scholar 

  • Roma-Dollase D, Hernández-Pajares M, Krankowski A et al (2018) Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geodesy 92(6):691–706

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. dissertation, University of Bern, Bern

  • Schunk RW, Sojka JJ (1992) Approaches to ionospheric modelling, simulation and prediction. Adv Space Res 12:317–326

    Article  Google Scholar 

  • Singh N, Horwitz JL (1992) Plasmasphere refilling: recent observations and modelling. J Geophys Res 97:1049–1079

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    Article  Google Scholar 

  • Teunissen PJG (1985) Generalized inverses, adjustment, the datum problem and S-transformations. In: Sanso F, Grafarend EW (eds) Optimization of geodetic networks. Springer-Verlag, Berlin, pp 11–55

    Chapter  Google Scholar 

  • Torr MR, Torr DG, Richards PG, Yung SP (1990) Mid- and low-latitude model of thermospheric emissions 1 O + (2P) 7320 A and N2 (2P) 3371 A. J Geophys Res 95:21147–21168

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geodesy 90:209–228

    Article  Google Scholar 

  • Xiang Y, Gao Y, Shi J, Xu C (2019) Consistency and analysis of ionospheric observables obtained from three precise point positioning models. J Geod 93:1161–1170

    Article  Google Scholar 

  • Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo Y-H (2011) Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather. https://doi.org/10.1029/2011SW000687

    Article  Google Scholar 

  • Zhang X, Tang L (2014) Daily global plasmaspheric maps derived from COSMIC GPS observations. IEEE Trans Geosci Remote Sens 52:6040–6046

    Article  Google Scholar 

  • Zhong J, Lei J, Dou X, Yue X (2016) Assessment of vertical TEC mapping functions for space-based GNSS observations. GPS Solut 20:353–362

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Fund for Distinguished Young Scholars (Grant no. 41825009) provided by Xiaohong Zhang, Changjiang Scholars program provided by Xiaohong Zhang; National Natural Science Foundation of China (no. 41904026) provided by Xiaodong Ren, the Funds for Creative Research Groups of China (no. 41721003) provided by Xiaohong Zhang. The numerical calculations have been done on the supercomputing system in the Supercomputing Center of Wuhan University. We thank all anonymous reviewers for their valuable, constructive, and prompt comments. We are very grateful to the Ionosphere Radiopropagation Unit of the T/ICT4D Laboratory for providing the NeQuick2 model code via https://t-ict4d.ictp.it/nequick2/source-code, ESA for providing the Swarm relevant data via ftp://swarm-diss.eo.esa.int, CDAAC for providing relevant data of the other LEO satellites via https://cdaac-www.cosmic.ucar.edu/cdaac/products.html, and the Crustal Dynamics Data Information System (CDDIS) data center for providing navigation file by the following FTP server: ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily/.

Author information

Authors and Affiliations

Authors

Contributions

XR, XZ and MS designed the research; XR and JC performed the research and wrote the paper; XR, JC, and JZ analyzed the data; XZ, XL, and MS gave helpful discussions on additional analyses and result interpretation.

Corresponding author

Correspondence to Xiaohong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Chen, J., Zhang, X. et al. Mapping topside ionospheric vertical electron content from multiple LEO satellites at different orbital altitudes. J Geod 94, 86 (2020). https://doi.org/10.1007/s00190-020-01415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01415-2

Keywords

Navigation