Skip to main content
Log in

Shock jump relations for multiphase mixtures with stiff mechanical relaxation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Examples of multiphase mixtures for which velocity and pressure relaxation are a stiff phenomenon are involved in many practical applications dealing with condensed phase mixtures, solid alloys, propellants and solid explosives, specific composite materials, micro- and nano-structured mixtures, etc. Shock relations for the mixture necessitate the determination of the volume fraction jump or any other thermodynamic variable jump. Examination of the shock dispersion mechanism suggests such jump relations. These relations are the phase Hugoniots which are compatible with the mixture energy equation. The corresponding model is conservative and symmetric. It fulfils the single-phase limit and guarantees volume fraction positivity. The shock relations are validated over a large set of experimental data and provide a remarkable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall R. (1996). How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comp. Phys. 125(1): 150–160

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Abgrall R. and Saurel R. (2003). Discrete equations for physical and numerical compressible multiphase mixtures. J. Comp. Phys. 186(2): 361–396

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Allaire G., Clerc S. and Kokh S. (2002). A five-equation model for the simulation of interfaces between compressible fluids. J. Comp. Phys. 181(2): 577–616

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Baer M.R. and Nunziato J.W. (1986). A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flows 12(6): 861–889

    Article  MATH  Google Scholar 

  5. Bdzil J.B., Menikoff R., Son S.F., Kapila A.K. and Stewart D.S. (1999). Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Phys. Fluids. 11(2): 378–402

    Article  ADS  MATH  Google Scholar 

  6. Bushman, A.V., Lomonosov, I.V., Khishchenko, K.V.: Shock wave data base. Available on line: http://www.ficp.ac.ru/ rusbank/ (2004)

  7. Chinnayya A., Daniel E. and Saurel R. (2004). Modelling detonation waves in heterogeneous energetic materials. J. Comp. Phys. 196(2): 490–538

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Dremin A.N. and Karpukhin I.A. (1960). Method of determination of shock adiabat of the dispersed substances (in Russian). Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 1(3): 184–188

    Google Scholar 

  9. Gavrilyuk S. and Saurel R. (2002). Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comp. Phys. 175(1): 326–360

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Hamad H. and Frohn A. (1980). Structure of fully dispersed waves in dusty gases. J. Appl. Math. Phys. (ZAMP) 31(1): 66–82

    Article  MATH  Google Scholar 

  11. Harlow, F.H., Amsden, A.A.: Fluid dynamics. Los Alamos Scientific Laboratory, University of California Press (1971)

  12. Kapila A.K., Son S.F., Bdzil J.B., Menikoff R. and Stewart D.S. (1997). Two-phase modeling of DDT: Structure of the velocity-relaxation zone. Phys. Fluids 9(12): 3885–3897

    Article  ADS  Google Scholar 

  13. Kapila A.K., Menikoff R., Bdzil J.B., Son S.F. and Stewart D.S. (2001). Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10): 3002–3024

    Article  ADS  Google Scholar 

  14. Le Metayer O., Massoni J. and Saurel R. (2004). Elaborating equations of state of a liquid and its vapor for two-phase flow models (in French). Int. J. Thermal Sci. 43(3): 265–276

    Article  Google Scholar 

  15. Marsh, S.P.: LASL Shock Hugoniot Data, University of California Press (1980)

  16. Massoni J., Saurel R., Baudin G. and Demol G. (1999). A mechanistic model for shock initiation of solid explosives. Phys. Fluids 11(3): 710–736

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Massoni J., Saurel R., Nkonga B. and Abgrall R. (2002). Some models and Eulerian methods for interface problems between compressible fluids with heat transfer (in French). Int. J. Heat Mass Transf. 45(6): 1287–1307

    Article  MATH  Google Scholar 

  18. Murrone A. and Guillard H. (2005). A five equation reduced model for compressible two phase flow problems. J. Comp. Phys. 202(2): 664–698

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Nesterenko, V.F.: Dynamics of heterogeneous materials. Springer, New York (2001)

  20. Resnyansky A.D. and Bourne N.K. (2004). Shock wave compression of a porous material. J. Appl. Phys. 95(4): 1760–1769

    Article  ADS  Google Scholar 

  21. Rudinger G. (1964). Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7(5): 658–663

    Article  MathSciNet  ADS  Google Scholar 

  22. Saurel R. and Abgrall R. (1999). A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comp. Phys. 150(2): 425–467

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Saurel R. and Abgrall R. (1999). A simple method for compressible multifluid flows. SIAM J. Scientific Comput. 21(3): 1115–1145

    Article  MATH  MathSciNet  Google Scholar 

  24. Saurel R. and Le Metayer O. (2001). A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431: 239–271

    Article  MATH  ADS  Google Scholar 

  25. Saurel R., Gavrilyuk S. and Renaud F. (2003). A multiphase model with internal degrees of freedom: application to shock- bubble interaction. J. Fluid Mech. 495: 283–321

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Saurel, R., Franquet, E., Daniel, E., Le Metayer, O.: A relaxation projection method for compressible flows. Part 1: The numerical equation of state for the Euler equations. J. Comp. Phys. (in press) (2006)

  27. Saurel, R., Le Metayer, O., Massoni, J., Gavrilyuk, S.: Shock jump relations for multiphase mixtures with stiff mechanical relaxation: validations with the Mie-Gruneisen EOS. Available on line: http://iusti.polytech.univ-mrs.fr/~smash/publications.html (2006)

  28. Shyue K-M. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comp. Phys. 142(1): 208–242

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Srivastava R.S. and Sharma J.P. (1985). Dispersed shock waves in gas-particle mixture. AIAA J 23: 1817–1819

    Article  ADS  Google Scholar 

  30. Stewart H.B. and Wendroff B. (1984). Two-phase flow: Models and methods. J. Comp. Phys. 56(3): 363–409

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saurel.

Additional information

Communicated by K. Takayama.

R. Saurel, O. Le Métayer, J. Massoni and S. Gavrilyuk also belong to INRIA SMASH Project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saurel, R., Le Métayer, O., Massoni, J. et al. Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16, 209–232 (2007). https://doi.org/10.1007/s00193-006-0065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-006-0065-7

Keywords

PACS

Navigation