Skip to main content
Log in

Numerical simulation and PIV study of compressible vortex ring evolution

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Formation and evolution of a compressible vortex ring generated at the open end of a short driver section shock tube has been simulated numerically for pressure ratios (PR) of 3 and 7 in the present study. Numerical study of compressible vortex rings is essential to understand the complicated flow structure and acoustic characteristics of many high Mach number impulsive jets where simultaneously velocity, density and pressure fields are needed. The flow development, incident shock formation, shock diffraction, vortex ring formation and its evolution are simulated using the AUSM+ scheme. The main focus of the present study is to evaluate the time resolved vorticity field of the vortex ring and the shock/expansion waves in the starting jet for short driver section shock tubes—a scenario where little data are available in existing literature. An embedded shock and a vortex induced shock are observed for PR =  7. However the vortex ring remains shock free, compact and unaffected by the trailing jet for PR =  3. Numerical shadowgraph shows the evolution of embedded shock and shock/expansion waves along with their interactions. The velocity and vorticity fields obtained from simulation are validated with the particle image velocimetry results and these data match closely. The translational velocity of the vortex ring, velocity across the vortex and the centre line velocity of the jet obtained from simulation also agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

M :

Mach number of the incident shock

U b :

Velocity behind the incident shock

U r :

Vortex ring translational velocity

u, v :

x, y component of velocities

t :

Time; t =  0 represents incident shock at shock tube exit

D :

Inner diameter of the shock tube

PR:

Pressure ratio between the driver and driven section

V s :

Shock speed

a :

Local speed of sound

References

  1. Abate G., Shyy W.: Dynamic structure of confined shocks undergoing sudden expansion. Prog. Aerosp. Sci. 38, 23–42 (2002)

    Article  Google Scholar 

  2. Jiang Z., Takayama K., Babinsky H., Meguro T.: Transient shock wave flows in tubes with sudden change in cross section. Shock Waves 7, 151–162 (1997)

    Article  Google Scholar 

  3. Sun M., Takayama K.: Vorticity production in shock diffraction. J. Fluid Mech. 478, 237–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sun M., Takayama K.: A note on numerical simulation of vortical structures in shock diffraction. Shock Waves 13, 25–32 (2003)

    Article  MATH  Google Scholar 

  5. Maxworthy T.: Turbulent vortex ring. J. Fluid Mech. 64, 227–239 (1974)

    Article  MATH  Google Scholar 

  6. Gharib M., Rambod E., Shariff K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. James S., Madnia C.K.: Direct numerical simulation of a laminar vortex ring. Phys. Fluids 8, 2400 (1996)

    Article  MATH  Google Scholar 

  8. Danaila I., Hélie J.: Numerical simulation of the post formation evolution of a laminar vortex ring. Phys. Fluids 20, 073602 (2008)

    Article  Google Scholar 

  9. Elder F.K., Hass N.: Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J. Appl. Phys. 23, 1065–1069 (1952)

    Article  Google Scholar 

  10. Phan, K.C., Stollery, J.L.: The effect of suppressors and muzzle brakes on shock wave strength. In: Proceedings of the 14th international symposium on shock tubes and waves, August 19–22, Sydney (1984)

  11. Baird J.P.: Supersonic vortex rings. Proc. R. Soc. Lond. Ser. A 409, 59–65 (1987)

    Article  Google Scholar 

  12. Brouillette M., Hebert C.: Propagation and interaction of shock-generated vortices. Fluid Dyn. Res. 21, 159–169 (1997)

    Article  Google Scholar 

  13. Arakeri J.H., Das D., Krothapalli A., Lourenco L.: Vortex ring formation at the open end of a shock tube: a PIV study. Phys. Fluids 30, 1008–1019 (2004)

    Article  Google Scholar 

  14. Murugan, T., Das, D.: Propagation and wall interaction of compressible vortex ring: qualitative study. In: The 9th Asian symposium on visualization, June 4–9, Hong Kong (2007)

  15. Murugan, T., Das, D.: Structure and acoustic characteristics of supersonic vortex rings. In: FLUCOME 2007 (9th international symposium on fluid control, measurement and visualization), September 16–19, Tallahassee (2007)

  16. Murugan T., Das D.: On evolution and acoustic characteristics of compressible vortex ring. Int. J. Aeroacoust. 7, 199–222 (2008)

    Article  Google Scholar 

  17. Murugan T., Das D.: Characteristics of noise produced during impingement of a compressible vortex ring on a wall. Int. J. Aeroacoust. 9(6), 849–858 (2010)

    Article  Google Scholar 

  18. Murugan, T.: Flow and acoustic characteristics of high mach number vortex rings during evolution and wall-interaction: an experimental investigation, Ph.D. Thesis, Indian Institute of Technology, Kanpur (2008)

  19. Murugan T., Das D.: Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp. Fluids 49, 1247–1261 (2010)

    Article  Google Scholar 

  20. Kontis K., An R., Edwards J.A.: Compressible vortex-ring studies with a number of generic body configurations. AIAA 44, 2962–2978 (2006)

    Article  Google Scholar 

  21. Kontis K., An R., Zare-Behtash H., Kounadis D.: Head-on collision of shock wave induced vortices with solid and perforated walls. Phys. Fluids 20, 016104 (2008)

    Article  Google Scholar 

  22. Zare-Behtash H., Kontis K., Gongora-Orozco N.: Experimental investigation of compressible vortex loops. Phys. Fluids 20, 126105 (2008)

    Article  Google Scholar 

  23. Zare-Behtash H., Gongora-Orozco N., Kontis K.: Global visualization and quantification of compressible vortex loops. J. Vis. 12(3), 233–240 (2009)

    Article  Google Scholar 

  24. Zare-Behtash H., Kontis K., Gongora-Orozco N., Takayama K.: Compressible vortex loop: effect of nozzle geometry. Int. J. Heat Fluid Flow 30, 561–576 (2009)

    Article  Google Scholar 

  25. Zare-Behtash H., Kontis K., Gongora-Orozco N., Takayama K.: Shock wave induced vortex loops emanating from nozzles with singular corners. Exp. Fluids 49, 1005–1019 (2010)

    Article  Google Scholar 

  26. Bussing, T., Pappas, G.: An introduction to pulse detonation engines. In: 32nd aerospace sciences meeting and exhibit, AIAA Paper 94-0263, Reno, Jan 10–13 (1994)

  27. Brun R., Reboh R.: Initial flow model in shock tubes. AIAA J. 15(9), 1344–1345 (1977)

    Article  Google Scholar 

  28. Mirels, H.: Laminar boundary layer behind shock advancing into stationary fluid, NACA TN 3401 (1955)

  29. Mirels H.: Correlation formulas for laminar shock tube boundary layer. Phys. Fluids 9(7), 1265–1272 (1966)

    Article  Google Scholar 

  30. Petersen E.L., Hanson R.K.: Improved turbulent boundary-layer model for shock tubes. AIAA J. 41(7), 1314–1322 (2003)

    Article  Google Scholar 

  31. Endo M., Iwamoto J.: Numerical analysis of pulsatile jet from exhaust pipe. JSAE Rev. 20, 243–249 (1999)

    Article  Google Scholar 

  32. Saito T., Takayama K.: Numerical simulations of nozzle starting process. Shock Waves 9, 73–79 (1999)

    Article  MATH  Google Scholar 

  33. Ishii R., Fujimoto H., Hatta N., Umeda Y.: Experimental and numerical analysis of circular pulse jets. J. Fluid Mech. 392, 129–153 (1999)

    Article  MATH  Google Scholar 

  34. Liou M.-S.: A sequel to AUSM: AUSM+, 1996. J. Comput. Phys. 129, 364–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Arnone, A., Liou, M.-S., Povinelli, L.A.: Multigrid time-accurate integration of Navier–Stokes equations. NASA TM 106373 (1993)

  36. Poinsot P.J., Lele S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  37. Melling A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8, 1406–1416 (1997)

    Article  Google Scholar 

  38. Geiger, F.W., Mautz, C.M., Hollyer, R.N. Jr.: The shock tube as an instrument for the investigation of transonic and super-sonic flow patterns, University of Michigan, Engr. Res. Inst. Rep., Proj. M 720-4 (1949)

  39. Glass, I.I., Martin, W., Patterson, G.N.: A Theoretical and experimental study of the shock tube, U.T.I.A. Report No. 2 (1953)

  40. White D.R.: Influence of diaphragm opening time on shock-tube flows. J. Fluid Mech. 4, 585–599 (1958)

    Article  MATH  Google Scholar 

  41. Alpher R.A., White D.R.: Flow in shock tubes with area change at the diaphragm. J. Fluid Mech. 3, 457–470 (1958)

    Article  Google Scholar 

  42. Widnall S.E., Sullivan J.P.: On the stability of vortex rings. Philos. Trans. R. Soc. Lond. Ser. A 332, 335–353 (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Murugan.

Additional information

Communicated by M. Brouillette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugan, T., De, S., Dora, C.L. et al. Numerical simulation and PIV study of compressible vortex ring evolution. Shock Waves 22, 69–83 (2012). https://doi.org/10.1007/s00193-011-0344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0344-9

Keywords

Navigation