Skip to main content
Log in

AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This article introduces an algorithm that determines the thermodynamic conditions behind incident and reflected shocks in aerosol-laden flows. Importantly, the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component-fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm’s calculations given typical experimental uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Campbell, M.F., Davidson, D.F., Hanson, R.K.: A second-generation aerosol shock tube and its use in studying ignition delay times of large biodiesel surrogates. In: Kontis, K. (ed.) 28th International Symposium on Shock Waves, pp. 517–522. Springer, Berlin (2012)

  2. Campbell, M.F., Davidson, D.F., Hanson, R.K.: Ignition delay times of very-low-vapor-pressure biodiesel surrogates behind reflected shock waves. Fuel 126, 271–281 (2014)

    Article  Google Scholar 

  3. MacDonald, M., Davidson, D., Hanson, R.: Decomposition measurements of RP-1, RP-2, JP-7, n-dodecane, and tetrahydroquinoline in shock tubes. J. Propuls. Power 5, 981–989 (2011)

    Article  Google Scholar 

  4. Panton, R., Oppenheim, A.K.: Shock relaxation in a particle-gas mixture with mass transfer between phases. Am. Inst. Aeronaut. Astronaut. J. 6(11), 2071–2077 (1968)

    Article  Google Scholar 

  5. Miura, H., Glass, I.I.: On a dusty-gas shock tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 382(1783), 373–388 (1982)

    Article  Google Scholar 

  6. Gaydon, A.G., Hurle, I.R.: The Shock Tube in High-Temperature Chemical Physics. Reinhold Publishing Corporation, New York (1963)

    Google Scholar 

  7. Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations. Technical report, Lewis Research Center: 1971 (2nd edn.), NASA SP-273, Available from National Technical Information Service, 5285 Port Royal Road. Springfield, Virginia 22151, N71-37775

  8. Mitchell, R.E., Kee, R.J.: A General-purpose computer code for predicting chemical kinetic behavior behind incident and reflected shocks. Technical Report SAND82-8205, Sandia National Laboratories, Livermore (1982)

  9. Esser, B.: State variables of a shock tube as a result from an exact Riemann solver (Die Zustandsgrössen im Stosswellenkanal als Ergebnisse eines exakten Riemannlösers). PhD thesis, RWTH Aachen University (1991)

  10. Davidson, D.F.: RGFROSH: a real gas frozen shock equation solver. Technical Report 1995-001-1.00, Mechanical Engineering Department, Stanford University, Stanford, October (1995)

  11. Davidson, D.F., Hanson, R.K.: Real gas corrections in shock tube studies at high pressures. Isr. J. Chem. 36, 321–326 (1996)

    Article  Google Scholar 

  12. Davidson, D.F., Petersen, E.L., Bates, R., Hanson, R.K.: Real gas effects at high pressures and temperatures in shock tube studies. In: JANNAF Combustion Subcommittee Meeting, pp. 49–56. SEE N97-18659 01-25 (1996)

  13. Morley, C.: GasEq Ver 0.79: A chemical equilibrium program for windows. Technical report, GasEq (2005)

  14. Bahn, G.S.: Role of vaporization rate in combustion of liquid fuels, chapter 10, pp. 104–115. Americal Chemical Society, 1155 Sixteenth Street, N.W. Washington D.C. (1958)

  15. Kotake, S., Glass, I.I.: Flows with nucleation and condensation. Prog. Aerosp. Sci. 19, 129–196 (1979)

    Article  Google Scholar 

  16. Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32(2), 162–214 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lu, H.Y., Chiu, H.H.: Dynamics of gases containing evaporable liquid droplets under a normal shock. Am. Inst. Aeronaut. Astronaut. J. 4(6), 1008–1011 (1966)

    Article  Google Scholar 

  18. Marble, F.E.: Some gasdynamic problems in the flow of condensing vapors. Astronaut. Acta 14, 585–614 (1969)

    Google Scholar 

  19. Marble, F.E.: Dynamics of dusty gases. Ann. Rev. Fluid Mech. 2, 397–446 (1970)

    Article  Google Scholar 

  20. Narkis, Y., Gal-Or, B.: Two-phase flow through normal shock wave. J. Fluids Eng. 97(3), 361–365 (1975)

    Article  Google Scholar 

  21. Rakib, Z., Igra, O., Ben-Dor, G.: The effect of water droplets on the relaxation zone developed behind strong normal shock waves. J. Fluids Eng. 106(2), 154–159 (1984)

    Article  Google Scholar 

  22. Igra, O., Ben-Dor, G., Rakib, Z.: The effect of dust and water droplets on the relaxation zone developed behind strong normal shock waves. Int. J. Multiph. Flow 11(2), 121–132 (1985)

    Article  Google Scholar 

  23. Luo, X., Prast, B., van Dongen, M.E.H., Hoeijmakers, H.W.M., Yang, J.: On phase transition in compressible flows: modelling and validation. J. Fluid Mech. 548, 403–430 (2006)

    Article  MathSciNet  Google Scholar 

  24. Luo, X., Wang, M., Yang, J., Wang, G.: The space-time CESE method applied to phase transition of water vapor in compressible flows. Comput. Fluids 36(7), 1247–1258 (2007)

    Article  MATH  Google Scholar 

  25. Guha, A., Young, J.B.: Adiabatic waves in liquid-vapour system: stationary and moving normal shock waves in wet steam, pp. 159–170. Springer, Gottingen (1989). ISBN: 3540502033

  26. Young, J.B., Guha, A.: Normal shock-wave structure in two-phase vapour-droplet flows. J. Fluid Mech. 228, 243–274 (1991)

    MATH  Google Scholar 

  27. Guha, A.: Structure of partly dispersed normal shock waves in vapor-droplet flows. Phys. Fluids A 4(7), 1566–1578 (1992)

    Article  MATH  Google Scholar 

  28. Guha, A.: Jump conditions across normal shock waves in pure vapour-droplet flows. J. Fluid Mech. 241, 349–369 (1992)

    Article  MathSciNet  Google Scholar 

  29. Young, J.B.: The fundamental equations of gas-droplet multiphase flow. Int. J. Multiph. Flow 21(2), 175–191 (1995)

    Article  MATH  Google Scholar 

  30. Tambour, Y., Zehavi, S.: Derivation of near-field sectional equations for the dynamics of polydisperse spray flows: an analysis of the relaxation zone behind a normal shock wave. Combust. Flame 95(4), 383–409 (1993)

    Article  Google Scholar 

  31. Chang, E.J., Kailasanath, K.: Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12, 333–341 (2003)

    Article  MATH  Google Scholar 

  32. Sivier, S., Loth, E., Baum, J., Löhner, R.: Unstructured adaptive remeshing finite element method for dusty shock flow. Shock Waves 4, 15–23 (1994)

    Article  MATH  Google Scholar 

  33. Sommerfeld, M.: The unsteadiness of shock waves propagating through gas-particle mixtures. Exp. Fluids 3, 197–206 (1985)

    Article  Google Scholar 

  34. Sychevskii, V.: Liquid droplet processing using shock waves. Theor. Found. Chem. Eng. 42, 377–385 (2008)

    Article  Google Scholar 

  35. Petersen, E.L.: Shock tube measurements of heterogeneous combustion phenomena. In: Spring 2000 Meeting of the Western States Section of the Combution Institute, Golden. Paper No. 00S-45 (March 13–14 2000)

  36. Ben-Dor, G., Igra, O., Elperin, T. (eds.): Shock wave propagation in multi-phase media: 15.4 Shock wave interaction with liquid gas suspensions. In: Handbook of Shock Waves, pp. 747–781. Academic Press, Burlington (2001)

  37. Mullaney, G.: Shock tube technique for study of autoignition of liquid fuel sprays. Ind. Eng. Chem. 50(1), 53–58 (1958)

    Article  Google Scholar 

  38. Mullaney, G.: Autoignition of liquid fuel sprays. Ind. Eng. Chem. 51(6), 779–782 (1959)

    Article  Google Scholar 

  39. Nettleton, M.A.: Ignition and combustion of a fuel of low volatility (hexadecane) in shock-heated air. Fuel 53(2), 88–98 (1974)

    Article  Google Scholar 

  40. Nettleton, M.A.: Influence of preflame reactions on combustion of hydrocarbons in shock-heated air. Fuel 53(2), 99–104 (1974)

    Article  Google Scholar 

  41. Nettleton, M.A.: Heat transfer to particles in shock-heated gases. Am. Inst. Aeronaut. Astronaut. J. 4(5), 939–940 (1966). AIAA-3577-519

    Article  Google Scholar 

  42. Nettleton, M.A.: Shock-wave chemistry in dusty gases and fogs: a review. Combust. Flame 28, 3–16 (1977)

    Article  Google Scholar 

  43. Roth, P., Fischer, R.: Shock tube measurements of submicron droplet evaporation. In: Archer, R.D., Milton, B.E. (eds.) Shock tubes and waves: Proceedings of the 14th International Symposium on Shock Tubes and Waves, pp. 429–436. Sydney Shock Tube Symposium Publishers, Sydney (1984)

  44. Roth, P., Fischer, R.: An experimental shock wave study of aerosol droplet evaporation in the transition regime. Phys. Fluids 28(6), 1665–1672 (1985)

    Article  Google Scholar 

  45. Goossens, H., Berkelmans, M., van Dongen, M.: Experimental investigation of weak shock waves propagating in a fog. In: Bershader, D., Hanson, R. (eds.) Shock waves and shock tubes, Proceedings of the 15th International Symposium on Shock Tubes and Shock Waves, pp. 721–725, Berkeley. Stanford University, Stanford University Press, Stanford (August 1986)

  46. Goossens, H.W.J., Cleijne, J.W., Smolders, H.J., van Dongen, M.E.H.: Shock wave induced evaporation of water droplets in a gas-droplet mixture. Exp. Fluids 6, 561–568 (1988)

    Article  Google Scholar 

  47. Smolders, H.J., Willems, J.F.H., de Lange, H.C., van Dongen, M.E.H.: Wave induced growth and evaporation of droplets in a vapour-gas mixture. AIP Conf. Proc. 208(1), 802–807 (1990)

    Article  Google Scholar 

  48. Smolders, H.J., van Dongen, M.E.H.: Shock wave structure in a mixture of gas, vapour and droplets. Shock Waves 2, 255–267 (1992)

    Article  Google Scholar 

  49. Smolders, H.J., Niessen, E.M.J., van Dongen, M.E.H.: The random choice method applied to non-linear wave propagation in gas-vapour-droplets mixtures. Comput. Fluids 21(1), 63–75 (1992)

    Article  MATH  Google Scholar 

  50. Hirahara, H., Kawahashi, M.: Optical measurement of gas-droplet mixture flow in an expansion-shock tube. J. Ser. B Fluids Therm. Eng 41(1), 155–161 (1998)

    Article  Google Scholar 

  51. Wierzba, A.: Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Exp. Fluids 9, 59–64 (1990)

    Article  Google Scholar 

  52. Petersen, E.L., Rickard, M.J., Crofton, M.W., Abbey, E.D., Traum, M.J., Kalitan, D.M.: A facility for gas- and condensed-phase measurements behind shock waves. Meas. Sci. Technol. 16(9), 1716–1729 (2005)

    Article  Google Scholar 

  53. Rotavera, B., Polley, N., Petersen, E.L., Scheu, K., Crofton, M., Bourque, G.: Ignition and combustion of heavy hydrocarbons using an aerosol shock-tube approach. ASME Conf. Proc. 2010(43970), 699–707 (2010)

    Google Scholar 

  54. Liao, Q., Xu, S.: The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube. J. Exp. Fluid Mech. 23, 70–74 (2009)

    Google Scholar 

  55. Zhang, Y.J., Huang, Z., Wang, J., Xu, S.: Shock tube study on auto-ignition characteristics of kerosene/air mixtures. Eng. Thermophys. Chin. Sci. Bull. 56(13), 1399–1406 (2011)

    Article  Google Scholar 

  56. Allen, C., Mittal, G., Sung, C.-J., Toulson, E., Lee, T.: An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proc. Combust. Inst. 33(2), 3367–3374 (2011)

    Article  Google Scholar 

  57. Kashdan, J.T., Hanson, T.C., Piper, E.L., Davidson, D.F., Hanson, R.K.: A new facility for the study of shock wave-induced combustion of liquid fuels. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, number AIAA 2004-468. American Institute of Aeronautics and Astronautics, Inc., January (2004)

  58. Hanson, T.C., Davidson, D.F., Hanson, R.K.: Shock tube measurements of water and n-dodecane droplet evaporation behind shock waves. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, number AIAA 2005-350. American Institute of Aeronautics and Astronautics, Inc., January (2005)

  59. Hanson, T.C.: The development of a facility and diagnostics for studying shock-induced behavior in micron-sized aerosols. PhD thesis, Stanford University (2005)

  60. Hanson, T.C., Davidson, D.F., Hanson, R.K.: Shock-induced behavior in micron-sized water aerosols. Phys. Fluids 19(5), 056104 (2007)

    Article  MATH  Google Scholar 

  61. Davidson, D.F., Haylett, D.R., Hanson, R.K.: Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels. Combust. Flame 155(1–2), 108–117 (2008)

    Article  Google Scholar 

  62. Haylett, D.R., Lappas, P.P., Davidson, D.F., Hanson, R.K.: Application of an aerosol shock tube to the measurement of diesel ignition delay times. Proc. Combust. Inst. 32(1), 477–484 (2009)

    Article  Google Scholar 

  63. Haylett, D.R., Cook, R.D., Davidson, D.F., Hanson, R.K.: OH and C\(_\text{2 }\)H\(_\text{4 }\) species time-histories during hexadecane and diesel ignition behind reflected shock waves. Proc. Combust. Inst. 33(1), 167–173 (2011)

    Article  Google Scholar 

  64. Haylett, D.R.: The development and application of aerosol shock tube methods for the study of low-vapor-pressure fuels. PhD thesis, Stanford University (2011)

  65. Haylett, D.R., Davidson, D.F., Hanson, R.K.: Ignition delay times of low-vapor-pressure fuels measured using an aerosol shock tube. Combust. Flame 159(2), 552–561 (2012)

    Article  Google Scholar 

  66. Haylett, D.R., Davidson, D.F., Hanson, R.K.: Second-generation aerosol shock tube: an improved design. Shock Waves 22(6), 483–493 (2012)

    Article  Google Scholar 

  67. MacDonald, M.E.: Decomposition kinetics of the Rocket Propellant RP-1 and its chemical kinetic surrogates. PhD thesis, Stanford University (2012)

  68. Campbell, M.F., Davidson, D.F., Hanson, R.K., Westbrook, C.K.: Ignition delay times of methyl oleate and methyl linoleate behind reflected shock waves. Proc. Combust. Inst. 34(1), 419–425 (2013)

    Article  Google Scholar 

  69. Campbell, M.F.: Studies of biodiesel surrogates using novel shock tube techniques. PhD thesis, Stanford University (2014)

  70. MathWorks. MATLAB. The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760-2098, R2011a edn, 2011. MATLAB is a registered trademark of The MathWorks, Inc. 508–647-7000

  71. Burcat, A., Ruscic, B.: Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Technical Report ANL-05/20 TAE 960, Argonne National Laboratory and Technion Israel Institute of Technology (2005)

  72. Jakubczyk, D., Koiwas, M., Derkachov, G., Koiwas, K., Zientara, M.: Evaporation of micro-droplets: the “Radius-Square-Law” revisited. Acta Phys. Pol. A 122(4), 709–716 (2012)

    Article  Google Scholar 

  73. Ortiz, C., Joseph, D.D., Beavers, G.S.: Acceleration of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 30(2), 217–224 (2004)

    Article  MATH  Google Scholar 

  74. Chu, B.T.: Thermodynamics of a dusty gas and its application to some aspects of wave propagation in the gas. Technical report, Division of Engineering, Brown University, Providence. Report No. DA-4761/1 (1960)

  75. Temkin, S.: Sound speeds in suspensions in thermodynamic equilibrium. Phys Fluids A 4(11), 2399–2409 (1992)

    Article  MATH  Google Scholar 

  76. Temkin, S.: Attenuation and dispersion of sound in dilute suspensions of spherical particles. J. Acoust. Soc. Am. 108(1), 126–146 (2000)

    Article  Google Scholar 

  77. Rudinger, G.: Fundamentals of Gas-Particle Flow. Elsevier Scientific, Amsterdam (1980)

    Google Scholar 

  78. Campbell, M.F., Freeman, K.G., Davidson, D.F., Hanson, R.K.: FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25–500 \(^\circ \)C. J. Quant. Spectrosc. Radiat. Transf. 145, 57–73 (2014)

    Article  Google Scholar 

  79. Avvaru, B., Patil, M.N., Gogate, P.R., Pandit, A.B.: Ultrasonic atomization: effect of liquid phase properties. Ultrasonics 44(2), 146–158 (2006)

    Article  Google Scholar 

  80. Klingbeil, A., Jeffries, J., Davidson, D., Hanson, R.: Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube. Appl. Phys. B 93, 627–638 (2008)

    Article  Google Scholar 

  81. Porter, J., Jeffries, J., Hanson, R.: Mid-infrared laser-absorption diagnostic for vapor-phase measurements in an evaporating n-decane aerosol. Appl. Phys. B 97, 215–225 (2009)

    Article  Google Scholar 

  82. Ren, W., Jeffries, J.B., Hanson, R.K.: Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO\(_\text{2 }\) near 2.7 \(\mu \)m. Meas. Sci. Technol. 21(10), 105603 (2010)

    Article  Google Scholar 

  83. Bax, S., Hakka, M.H., Glaude, P.A., Herbinet, O., Battin-Leclerc, F.: Experimental study of the oxidation of methyl oleate in a jet-stirred reactor. Combust. Flame 157(6), 1220–1229 (2010)

    Article  Google Scholar 

  84. Yaws, C.L.: Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals. Technical report, Knovel. Electronic edn. (2009)

  85. Yaws, C.L., Narasimhan P.K., Gabbula, C.: Yaws’ Handbook of Antoine Coefficients for Vapor Pressure. Technical report, Knovel. 2nd Electronic edn. (2009)

  86. Yaws, C.L.: Yaws’ Thermophysical Properties of Chemicals and Hydrocarbons. Technical report, Knovel. Electronic edn. (2010)

  87. Yaws, C.L.: Yaws’ Transport Properties of Chemicals and Hydrocarbons. Technical report, Knovel. Electronic edn. (2010)

Download references

Acknowledgments

This work was supported by the Army Research Office with Dr. Ralph Anthenien as contract monitor. M.F.C. is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences (BES), the U.S. Department of Energy (DOE). Also, during a portion of this work, M.F.C. was supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Campbell.

Additional information

Communicated by O. Igra and A. Higgins.

Appendix 1: Derivation of select equations

Appendix 1: Derivation of select equations

1.1 1.1 Derivation of equation (20)

The total number of moles in the gas phase following evaporation \(N_{2,\mathrm{g}}\) is equal to the number of moles of carrier gas (the carrier gas consists of bath gas plus fuel vapor) in Region 1 \(N_\mathrm{1,g}\) plus the number of moles in the droplets in Region 1 \(N_{1,\mathrm{d}}\):

$$\begin{aligned} N_\mathrm{2,g} = N_\mathrm{1,g} + N_\mathrm{1,d} \end{aligned}$$
(35)

For Region 1, the number of moles of bath gas (non-fuel vapor components) in Region 1 \(N_\mathrm{1,bath}\) can be obtained using the total number of moles of carrier gas in Region 1 and the mole fraction of bath gas in Region 1 \(x_\mathrm{1,bath}\):

$$\begin{aligned} N_\mathrm{1,bath} = N_\mathrm{1,g} x_\mathrm{1,bath} \end{aligned}$$
(36)

The same can be accomplished for Region 2:

$$\begin{aligned} N_\mathrm{2,bath} = N_\mathrm{2,g} x_\mathrm{2,bath} \end{aligned}$$
(37)

Also, mass is conserved in the bath gas components between Regions 1 and 2:

$$\begin{aligned} N_\mathrm{1,bath} = N_\mathrm{2,bath} \end{aligned}$$
(38)

Equations (35)–(38) can be combined and rearranged, yielding

$$\begin{aligned} \frac{N_\mathrm{1,g} x_\mathrm{1,bath}}{x_\mathrm{2,bath}} = N_{1,\mathrm{g}} + N_{1,\mathrm{d}} \end{aligned}$$
(39)

Finally, the ratio \(\frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}}\) can be isolated to achieve the desired result:

$$\begin{aligned} \frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}} = \frac{x_\mathrm{1,bath}-x_\mathrm{2,bath}}{x_\mathrm{2,bath}} \end{aligned}$$
(20)

1.2 1.2 Derivation of equation (21)

The mole fraction of bath gas component i in Region 2 following complete evaporation is given by the molar ratio

$$\begin{aligned} x_{\mathrm{2,bath},i} = \frac{N_{\mathrm{2,bath},i}}{N_{2,\mathrm{g}}} \end{aligned}$$
(40)

Mass conservation of bath gas components across Regions 1 and 2 gives

$$\begin{aligned} N_\mathrm{1,bath} = N_\mathrm{2,bath} \end{aligned}$$
(41)

and hence

$$\begin{aligned} x_{\mathrm{2,bath},i} = \frac{N_{\mathrm{1,bath},i}}{N_\mathrm{2,g}} \end{aligned}$$
(42)

The following equation relates the number of moles of the i th bath gas component \(N_{1,\mathrm{bath},{i}}\) to that component’s mole fraction \(x_{1,\mathrm{bath},{i}}\):

$$\begin{aligned} N_{\mathrm{1,bath},i} = N_\mathrm{1,g} x_{\mathrm{1,bath},i} \end{aligned}$$
(43)

This can be used in (42), together with (35), to write

$$\begin{aligned} x_{\mathrm{2,bath},i} = \frac{N_\mathrm{1,g} x_{\mathrm{1,bath},i}}{N_\mathrm{1,g} + N_{1,\mathrm{d}}} \end{aligned}$$
(44)

Finally, rearranging yields

$$\begin{aligned} x_{\mathrm{2,bath},i} = \frac{x_{\mathrm{1,bath},i}}{1 + \frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}}} \end{aligned}$$
(21)

1.3 1.3 Derivation of equation (22)

The gas-phase mole fraction of fuel in Region 2 following complete evaporation is equal to the molar ratio

$$\begin{aligned} x_\mathrm{2,fuel} = \frac{N_\mathrm{2,fuel}}{N_\mathrm{2,g}} \end{aligned}$$
(45)

Mass conservation for the fuel molecules dictates that the total number of moles of fully evaporated fuel in Region 2 \(N_\mathrm{2,fuel}\) is the sum of the moles of fuel vapor \(N_\mathrm{1,fuel,vap}\) in Region 1 and the moles of droplets \(N_{1,\mathrm{d}}\) in Region 1:

$$\begin{aligned} N_\mathrm{2,fuel} = N_\mathrm{1,fuel,vap} + N_{1,\mathrm{d}} \end{aligned}$$
(46)

Combining (35) and (46) in Equation (45) produces

$$\begin{aligned} x_\mathrm{2,fuel} = \frac{N_\mathrm{1,fuel,vap} + N_{1,\mathrm{d}}}{N_\mathrm{1,g} + N_{1,\mathrm{d}}} \end{aligned}$$
(47)

The quantity \(N_\mathrm{1,fuel,vap}\) can be rewritten as

$$\begin{aligned} N_\mathrm{1,fuel,vap} = N_\mathrm{1,g} x_\mathrm{1,fuel} \end{aligned}$$
(48)

yielding

$$\begin{aligned} x_\mathrm{2,fuel} = \frac{N_\mathrm{1,g} x_\mathrm{1,fuel} + N_{1,\mathrm{d}}}{N_{1,\mathrm{g}} + N_{1,\mathrm{d}}} \end{aligned}$$
(49)

Finally, rearranging gives

$$\begin{aligned} x_\mathrm{2,fuel} = \frac{x_\mathrm{1,fuel} + \frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}}}{1 + \frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}}} \end{aligned}$$
(22)

1.4 1.4 Derivation of equation (31)

Since absorbance values are additive, the total Region 2 absorbance value \(\alpha _2\) for a mixture of absorbing fuels [see also (11)] is given by

$$\begin{aligned} \alpha _2 = \displaystyle \sum _{j=1}^{C_{\text {fuel}}} n_{\mathrm{2,fuel},j} \sigma _{\mathrm{2,fuel},j} L \end{aligned}$$
(50)

Also, the total absorbance, computed using the total fuel concentration \(n_\mathrm{2,fuel}\) and an average cross section \(\sigma _\mathrm{2,fuel,avg}\) can be defined by

$$\begin{aligned} \alpha _2 = n_\mathrm{2,fuel} \sigma _\mathrm{2,fuel,avg} L \end{aligned}$$
(51)

Equating (50) and (51) and canceling the path length L gives

$$\begin{aligned} \displaystyle \sum _{j=1}^{C_{\text {fuel}}} n_{\mathrm{2,fuel},j} \sigma _{\mathrm{2,fuel},j} = n_\mathrm{2,fuel} \sigma _\mathrm{2,fuel,avg} \end{aligned}$$
(52)

The concentration of fuel component j can be written

$$\begin{aligned} n_{\mathrm{2,fuel},j} = x_{\mathrm{2,fuel},j} n_\mathrm{2,total} \end{aligned}$$
(53)

and likewise \(n_\mathrm{2,fuel}\) can be written

$$\begin{aligned} n_\mathrm{2,fuel} = x_\mathrm{2,fuel} n_\mathrm{2,total} \end{aligned}$$
(54)

where \(n_{2,\mathrm{total}}\) is the total gas-phase molar concentration following complete evaporation. Substituting these relations into (52) and canceling \(n_{2,\mathrm{total}}\) gives

$$\begin{aligned} \displaystyle \sum _{j=1}^{C_{\text {fuel}}} x_{\mathrm{2,fuel},j} \sigma _{\mathrm{2,fuel},j} = x_\mathrm{2,fuel} \sigma _\mathrm{2,fuel,avg} \end{aligned}$$
(55)

Finally, solving for \(\sigma _\mathrm{2,fuel,avg}\) yields

$$\begin{aligned} \sigma _\mathrm{2,fuel,avg} = \displaystyle \sum _{j=1}^{C_{\text {fuel}}} \frac{x_{\mathrm{2,fuel},j}}{x_\mathrm{2,fuel}} \sigma _{\mathrm{2,fuel},j} \end{aligned}$$
(31)

1.5 1.5 Derivation of equation (32)

The gas-phase mole fraction of fuel component j in Region 2 following complete evaporation is equal to the molar ratio

$$\begin{aligned} x_{\mathrm{2,fuel},j} = \frac{N_{\mathrm{2,fuel},j}}{N_\mathrm{2,g}} \end{aligned}$$
(56)

Mass conservation for the fuel component j dictates that the total number of moles of fully evaporated component j in Region 2 \(N_{\mathrm{2,fuel},j}\) is the sum of the moles of fuel component j vapor \(N_{\mathrm{1,fuel,vap},j}\) in Region 1 and the moles of component j in the droplets \(N_{1,{\mathrm{d},j}}\) in Region 1:

$$\begin{aligned} N_{\mathrm{2,fuel},j} = N_{\mathrm{1,fuel,vap},j} + N_{\mathrm{1,d},j} \end{aligned}$$
(57)

Using (57) and also (35) in (56) produces

$$\begin{aligned} x_{\mathrm{2,fuel},j} = \frac{N_{\mathrm{1,fuel,vap},j} + N_{1,{\mathrm{d},j}}}{N_\mathrm{1,g} + N_{1,\mathrm{d}}} \end{aligned}$$
(58)

The quantity \(N_{\mathrm{1,fuel,vap},j}\) can be rewritten as

$$\begin{aligned} N_{\mathrm{1,fuel,vap},j} = N_\mathrm{1,g} x_{\mathrm{1,fuel},j} \end{aligned}$$
(59)

Also, recalling that y represents liquid mole fractions, the number of moles of fuel component j in the drops can be written

$$\begin{aligned} N_{\mathrm{1,d},j} = N_{1,\mathrm{d}} y_{\mathrm{fuel,droplet},j} \end{aligned}$$
(60)

Equations (59) and (60) can be used to simplify (58), yielding

$$\begin{aligned} x_{\mathrm{2,fuel},j} = \frac{N_\mathrm{1,g} x_{\mathrm{1,fuel},j} + N_{1,\mathrm{d}} y_{\mathrm{fuel,droplet},j}}{N_\mathrm{1,g} + N_{1,\mathrm{d}}} \end{aligned}$$
(61)

Assuming that the mole fractions of the fuel components in the droplets are equivalent to those prepared by the supplier (i.e., \(y_{\mathrm{fuel,droplet},j} = y_{\mathrm{fuel,supplier},j}\), as discussed in Sect. 8.5) allows further simplification:

$$\begin{aligned} x_{\mathrm{2,fuel},j} = \frac{N_{1,\mathrm{g}} x_{\mathrm{1,fuel},j} + N_{1,\mathrm{d}} y_{\mathrm{fuel,supplier},j}}{N_\mathrm{1,g} + N_{1,\mathrm{d}}} \end{aligned}$$
(62)

Finally, rearranging produces

$$\begin{aligned} x_{\mathrm{2,fuel},j} = \frac{x_{\mathrm{1,fuel},j} + \frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}} y_{\mathrm{fuel,supplier},j}}{1 + \frac{N_{1,\mathrm{d}}}{N_\mathrm{1,g}}} \end{aligned}$$
(32)

1.6 1.6 Derivation of equation (33)

Consider a volume of aerosol in Region 1 that contains \(N_\mathrm{total}\) moles in the gas and liquid phases. \(N_\mathrm{total}\) can be computed from the sum of the number of moles of gas in that volume \(N_\mathrm{1,g}\) and the number of moles comprising the droplets in that volume \(N_{1,\mathrm{d}}\):

$$\begin{aligned} N_\mathrm{total} = N_\mathrm{1,g} + N_{1,\mathrm{d}} \end{aligned}$$
(63)

Prior to evaporation, the fraction of moles in the liquid phase within this volume is given by \(C_\mathrm{m}\)

$$\begin{aligned} C_\mathrm{m} = \frac{N_{1,\mathrm{d}}}{N_{1,\mathrm{d}} + N_\mathrm{1,g}} \end{aligned}$$
(5)

such that \(N_{1,\mathrm{d}}\) can be expressed as

$$\begin{aligned} N_{1,\mathrm{d}} = C_\mathrm{m} N_\mathrm{total} \end{aligned}$$
(64)

Following evaporation at the end of Region 2, all droplets are in the gas phase; thus

$$\begin{aligned} N_\mathrm{total} = N_\mathrm{2,g} \end{aligned}$$
(65)

Also, the number of moles of fuel in the gas phase following evaporation \(N_\mathrm{2,fuel}\) is

$$\begin{aligned} N_\mathrm{2,fuel} = x_\mathrm{2,fuel} N_\mathrm{2,g} \end{aligned}$$
(66)

The fraction of fuel loading attributable to the droplets is equal to

$$\begin{aligned} \Upsilon _\mathrm{d} = \frac{N_\mathrm{1,d}}{N_\mathrm{2,fuel}} \end{aligned}$$
(67)

Finally, substituting (64)–(66) into (67) and canceling \(N_\mathrm{total}\) yields

$$\begin{aligned} \Upsilon _\mathrm{d}=\frac{C_\mathrm{m}}{x_\mathrm{2,fuel}} \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, M.F., Haylett, D.R., Davidson, D.F. et al. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows. Shock Waves 26, 429–447 (2016). https://doi.org/10.1007/s00193-015-0582-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0582-3

Keywords

Navigation