Skip to main content
Log in

Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure–time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaycox, L., Tanielian, T.L., Rand Corporation. National Security Research, D., Health, R., California Community, F., Rand, C.: Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery (2008). https://www.rand.org/pubs/monographs/MG720.readonline.html. Accessed 18 Nov 2016

  2. DePalma, R.G., Hoffman, S.W.: Combat Blast Related Traumatic Brain Injury (TBI): Decade of Recognition. Promise of Progress. Behavioural Brain Research, London (2016)

    Google Scholar 

  3. Mac Donald, C.L., Barber, J., Andre, J., Evans, N., Panks, C., Sun, S., Zalewski, K., Sanders, R.E., Temkin, N.: 5-Year imaging sequelae of concussive blast injury and relation to early clinical outcome. NeuroImage Clin. 14, 371–378 (2017). doi:10.1016/j.nicl.2017.02.005

    Article  Google Scholar 

  4. Heltemes, K.J., Holbrook, T.L., MacGregor, A.J., Galarneau, M.R.: Blast-related mild traumatic brain injury is associated with a decline in self-rated health amongst US military personnel. Inj. Int. J. Care Inj. 43(12), 1990–1995 (2012). doi:10.1016/j.injury.2011.07.021

    Article  Google Scholar 

  5. Ritzel, D., Parks, S., Roseveare, J., Rude, G., Sawyer, T.: Experimental blast simulation for injury studies. RTO-MP-HFM-207. Paper Presented at the RTO Human Factors and Medicine Panel (HFM) Symposium, pp. 3–5, Halifax, October 2011

  6. Hyde, D.W.: ConWep: Conventional Weapon Effects (software) (1991)

  7. Kuriakose, M., Skotak, M., Misistia, A., Kahali, S., Sundaramurthy, A., Chandra, N.: Tailoring the blast exposure conditions in the shock tube for generating pure, primary shock waves: The end plate facilitates elimination of secondary loading of the specimen. PLoS ONE 11(9), e0161597 (2016). doi:10.1371/journal.pone.0161597

    Article  Google Scholar 

  8. Chandra, N., Ganpule, S., Kleinschmit, N., Feng, R., Holmberg, A., Sundaramurthy, A., Selvan, V., Alai, A.: Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves 22(5), 403–415 (2012). doi:10.1007/s00193-012-0399-2

    Article  Google Scholar 

  9. Pun, P.B., Kan, E.M., Salim, A., Li, Z., Ng, K.C., Moochhala, S.M., Ling, E.A., Tan, M.H., Lu, J.: Low level primary blast injury in rodent brain. Front Neurol. 2, 19 (2011). doi:10.3389/fneur.2011.00019

    Article  Google Scholar 

  10. Lu, J., Ng, K.C., Ling, G., Wu, J., Poon, D.J., Kan, E.M., Tan, M.H., Wu, Y.J., Li, P., Moochhala, S., Yap, E., Lee, L.K., Teo, M., Yeh, I.B., Sergio, D.M., Chua, F., Kumar, S.D., Ling, E.A.: Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J. Neurotrauma 29(7), 1434–1454 (2012). doi:10.1089/neu.2010.1591

    Article  Google Scholar 

  11. Shreffler, R., Christian, R.: Boundary disturbances in high-explosive shock tubes. J. Appl. Phys. 25(3), 324–331 (1954). doi:10.1063/1.1721633

    Article  Google Scholar 

  12. Freiwald, D.: Approximate blast wave theory and experimental data for shock trajectories in linear explosive-driven shock tubes. J. Appl. Phys. 43(5), 2224–2226 (1972). doi:10.1063/1.1661479

    Article  Google Scholar 

  13. Coates, P., Gaydon, A.: A simple shock tube with detonating driver gas. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1392, 18–32 (1965). doi:10.1098/rspa.1965.0004

    Article  Google Scholar 

  14. Olivier, H., Jiang, Z., Yu, H.R., Lu, F.K.: Detonation-driven shock tubes and tunnels. Prog. Astronaut. Aeronaut. 198, 135–203 (2002). doi:10.2514/5.9781600866678.0135.0203

    Google Scholar 

  15. Vieille, P.: Sur les discontinuités produites par la détente brusque de gaz comprimes. C. R. Acad. Sci. A 129, 1228–1230 (1899)

    Google Scholar 

  16. Fomin, N.A.: 110 Years of experiments on shock tubes. J. Eng. Phys. Thermophys. 83(6), 1118–1135 (2010). doi:10.1007/s10891-010-0437-9

    Article  Google Scholar 

  17. Richmond, D.R., Damon, E.G., Fletcher, E.R., Bowen, I.G., White, C.S.: The relationship between selected blast-wave parameters and the response of mammals exposed to air blast. Ann. N. Y. Acad. Sci. 152(1), 103–121 (1968). doi:10.1111/j.1749-6632.1968.tb11970.x

    Article  Google Scholar 

  18. Stuhmiller, J.H.: Blast Injury: Translating Research into Operational Medicine. United States Dept. of Defense (2008)

  19. Kobeissy, F.H., Mondello, S., Tumer, N., Toklu, H.Z., Whidden, M.A., Kirichenko, N., Zhang, Z., Prima, V., Yassin, W., Namas, C., Anagli, J., Svetlov, S., Wang, K.K.W.: Assessing neuro-systemic and behavioral components in the pathophysiology of blast-related brain injury. Front. Neurol. 4, 186 (2013). doi:10.3389/fneur.2013.00186

    Article  Google Scholar 

  20. Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.A.: Blast testing issues and TBI: Experimental models that lead to wrong conclusions. Front. Neurol. 6, 72 (2015). doi:10.3389/fneur.2015.00072

    Article  Google Scholar 

  21. Friedlander, R.G.: The diffraction of sound pulses: 1. Diffraction by a semi-infinite plane. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 186(1006), 322–344 (1946). doi:10.1098/rspa.1946.0046

    Google Scholar 

  22. Kinney, G.F., Graham, K.J.: Explosive Shocks in Air, 2nd (edn.) Springer Science. Business Media, Heidelberg (1985). doi:10.1007/978-3-642-86682-1

  23. Glasstone, S., Dolan, P.J.: The Effects of Nuclear Weapons. Prepared and published by the US Dept. of Defense and the US Dept. of Energy, Washington (1977). Accessed from http://nla.gov.au/nla.cat-vn2542355. Accessed 27 Sept 2017

  24. Pakdaman, S., Garcia, M., Teh, E., Lincoln, D., Trivedi, M., Alves, M., Johansen, C.: Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel. Shock Waves 26, 799–813 (2016). doi:10.1007/s00193-016-0628-1

    Article  Google Scholar 

  25. Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.: Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front Neurol. 6, 72 (2015). doi:10.3389/fneur.2015.00072

    Article  Google Scholar 

  26. Elder Jr., F., De Haas, N.: Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J. Appl. Phys. 23(10), 1065–1069 (1952). doi:10.1063/1.1701987

    Article  Google Scholar 

  27. Ganpule, S., Alai, A., Plougonven, E., Chandra, N.: Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech. Model. Mechanobiol. 12(3), 511–531 (2013). doi:10.1007/s10237-012-0421-8

  28. Ganpule, S., Gu, L., Alai, A., Chandra, N.: Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput. Methods Biomech. Biomed. Eng. 15, 1233–1244 (2012). doi:10.1080/10255842.2011.597353

    Article  Google Scholar 

  29. Sundaramurthy, A., Alai, A., Ganpule, S., Holmberg, A., Plougonven, E., Chandra, N.: Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model. J. Neurotrauma 29(13), 2352–2364 (2012). doi:10.1089/neu.2012.2413

    Article  Google Scholar 

  30. Gullotti, D.M., Beamer, M., Panzer, M.B., Chen, Y.C., Patel, T.P., Yu, A., Jaumard, N., Winkelstein, B., Bass, C.R., Morrison, B., Meaney, D.F.: Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury. J. Biomech. Eng. 136(9), 091004 (2014). doi:10.1115/1.4027873

    Article  Google Scholar 

  31. Shridharani, J.K., Wood, G.W., Panzer, M.B., Capehart, B.P., Nyein, M.K., Radovitzky, R.A., Bass, C.R.: Porcine head response to blast. Front Neurol. 3, 70 (2012). doi:10.3389/fneur.2012.00070

    Article  Google Scholar 

  32. Arakeri, J., Das, D., Krothapalli, A., Lourenco, L.: Vortex ring formation at the open end of a shock tube: A particle image velocimetry study. Phys. Fluids 16(4), 1008–1019 (2004). doi:10.1063/1.1649339

    Article  MATH  Google Scholar 

  33. Zare-Behtash, H., Kontis, K., Gongora-Orozco, N.: Experimental investigations of compressible vortex loops. Phys. Fluids 20(12), 126105 (2008). doi:10.1063/1.3054151

    Article  MATH  Google Scholar 

  34. Desmoulin, G.T., Dionne, J.P.: Blast-induced neurotrauma: Surrogate use, loading mechanisms, and cellular responses. J. Trauma 67(5), 1113–1122 (2009). doi:10.1097/TA.0b013e3181bb8e84

    Article  Google Scholar 

  35. Skotak, M., Wang, F., Alai, A., Holmberg, A., Harris, S., Switzer, R.C., Chandra, N.: Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures. J. Neurotrauma 30(13), 1147–1160 (2013). doi:10.1089/neu.2012.2652

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. 14059001 (total pressure measurements and quantification in 9 in. shock tube) entitled “Primary Blast Injury Criteria for Animal/Human TBI Models using Field Validated Shock Tubes” received from the US Army Medical Research and Materiel Command. The headform testing was performed using funds received from Award No. W91CRB-16-C-0025 (PEO Soldier) and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra.

Additional information

Communicated by O. Petel and S. Ouellet.

Appendix

Appendix

1.1 Calculation of static, dynamic, stagnation, and reflection pressures during blast

Pressures are measured both in live-fire and shock tubes using pressure gauges with time resolution sufficient to capture rise times of the order of a few microseconds, and hence the sensors and the data acquisition system should be rated with 1 MHz or higher sampling frequency. If blast overpressure \(p_0^{\mathrm{gauge}} \) is measured as side-on pressure (either in the field or shock tube walls), then they are typically expressed in terms of either kPa or psi. This \(p_0^{\mathrm{gauge}}\) should be converted to bars using \(p_0 =p_0^{\mathrm{gauge}}/101.32\) for kPa or \(p_0 =p_0^{\mathrm{gauge}}/14.7\) for psi; thus, \(p_0 \) is in bars. In the literature, the suffix x typically indicates ambient un-shocked conditions, while the y denotes values within the shocked gas. In this Appendix, we are mainly concerned with air blast with ambient condition denoted by \(T_x =15\,^{\circ }\hbox {C}=288\,\hbox {K}\); \(\hbox {pressure}=1.01325\) bars; \(\hbox {density}=1.225\,{\hbox {kg}}/{\hbox {m}^{3}}\) and at sea level.

Some of the basic quantities can be found using the following equations.

$$\begin{aligned} \frac{p_y }{p_x }= & {} \frac{p_0 +1.0132}{1.0132} \end{aligned}$$
(2)
$$\begin{aligned} M= & {} \sqrt{\frac{1}{7}\left( 1+6\frac{p_y }{p_x }\right) } \end{aligned}$$
(3)
$$\begin{aligned} \frac{T_y }{T_x }= & {} \frac{\left( 5+M^{2}\right) \left( 7M^{2}-1\right) }{36M^{2}}. \end{aligned}$$
(4)

Then the acoustic velocity in the shocked medium can be computed. Recall that velocity depends on the atomic vibration which depends on the temperature. If \(a_x =340\,{\hbox {m}}/{\hbox {s}}\), then \(a_y \) the acoustic velocity in the shock can be computed using

$$\begin{aligned} \frac{a_y }{a_x }=\sqrt{\frac{T_y }{T_x }}. \end{aligned}$$
(5)

The particle velocity in the shock tube which is the main cause of dynamic pressure can also be calculated. The particle velocity \(u_\mathrm{p}\) just behind the shock front can be calculated using

$$\begin{aligned} u_\mathrm{p} =\frac{5\left( M^{2}-1\right) }{6M}a_x. \end{aligned}$$
(6)

Stagnation pressure \(p_{\mathrm{stag}} \) is the absolute pressure, when a moving flow stream with particle velocity is brought to rest isentropically. It is given by

$$\begin{aligned} p_{\mathrm{stag}} =\left[ {1+\frac{\left( {\frac{u_\mathrm{p} }{a_x }} \right) ^{2}}{5\left( \frac{T_y }{T_x }\right) }} \right] \left( {\frac{p_y }{p_x }} \right) . \end{aligned}$$
(7)

For practical purposes \(p_{\mathrm{stag}}\) can be assumed to be equivalent to \(p_{\mathrm{tot}}\) the total pressure measured in gauge units using pencil probe. Equation (8) expresses \(p_{\mathrm{stag}}\) in absolute units. In order to convert to gauge units for comparison purposes, we need to use \(p_{\mathrm{stag}}^{\mathrm{gauge}} =p_{\mathrm{stag}} -1.0132\). Thus, we can compute dynamic pressure as \(p_{\mathrm{dyn}} =p_{\mathrm{tot}} -p_{\mathrm{o}} \approx p_{\mathrm{stag}} -p_{\mathrm{o}} \). While \(p_{\mathrm{tot}}\) can be measured using pencil probe, this is not the pressure one will measure on a flat object normal to the shock flow. When the fast-moving particles are suddenly brought to rest instantaneously, it initiates a reflected shock that travels against the oncoming incident shock. The pressure acting on the target is given by the reflected pressure and not total pressure. This reflected pressure \(p_{\mathrm{ref}} =p_\mathrm{r}\) can be computed using

$$\begin{aligned} p_\mathrm{r} =\left[ {\frac{\left( {4M^{2}-1} \right) \left( {7M^{2}-1} \right) }{3\left( {M^{2}+5} \right) }} \right] p_x. \end{aligned}$$
(8)

Reflection ratio

$$\begin{aligned} \varLambda =\frac{p_\mathrm{r} -p_x }{p_y -p_x }=\frac{\hbox {Reflection overpressure}}{\hbox {Blast overpressure}}=\frac{8M^{2}+4}{M^{2}+5}.\nonumber \\ \end{aligned}$$
(9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alay, E., Skotak, M., Misistia, A. et al. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes. Shock Waves 28, 51–62 (2018). https://doi.org/10.1007/s00193-017-0762-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0762-4

Keywords

Navigation