Skip to main content
Log in

Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A highly resolved three-dimensional large-eddy simulation (LES) is presented for a shock tube containing a stoichiometric hydrogen–oxygen (\(\hbox {H}_2\)/\(\hbox {O}_2\)) mixture, and the results are compared against experimental results. A parametric study is conducted to test the effects of grid resolution, numerical scheme, and initial conditions before the 3D simulations are presented in detail. An approximate Riemann solver and a high-order interpolation scheme are used to solve the conservation equations of the viscous, compressible fluid and to account for turbulence behind the reflected shock. Chemical source terms are calculated by a finite-rate model. Simultaneous results of pseudo-Schlieren, temperature, pressure, and species are presented. The ignition delay time is predicted in agreement with the experiments by the three-dimensional simulations. The mechanism of mild ignition is analysed by Lagrangian tracer particles, tracking temperature histories of material particles. We observed strongly increased temperatures in the core region away from the end wall, explaining the very early occurrence of mild ignition in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mirels, H.: Attenuation in a shock tube due to unsteady-boundary-layer action. NACA-TR-1333, National Advisory Committee for Aeronautics (1957)

  2. White, D.R.: Influence of diaphragm opening time on shock-tube flows. J. Fluid Mech. 4(6), 585–599 (1958). https://doi.org/10.1017/s0022112058000677

    Article  MATH  Google Scholar 

  3. Petersen, E.L., Hanson, R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10(6), 405–420 (2001). https://doi.org/10.1007/pl00004051

    Article  Google Scholar 

  4. Meyer, J.W., Oppenheim, A.K.: On the shock-induced ignition of explosive gases. Proc. Combust. Inst. 13(1), 1153–1164 (1971). https://doi.org/10.1016/s0082-0784(71)80112-1

    Article  Google Scholar 

  5. Blumenthal, R., Fieweger, K., Komp, K.H., Adomeit, G.: Gas dynamic features of self ignition of non diluted fuel/air mixtures at high pressure. Combust. Sci. Technol. 123(1–6), 1–30 (1997). https://doi.org/10.1080/00102209708935637

    Article  Google Scholar 

  6. Chaos, M., Dryer, F.L.: Chemical-kinetic modeling of ignition delay: Considerations in interpreting shock tube data. Int. J. Chem. Kinet. 42(3), 143–150 (2010). https://doi.org/10.1002/kin.20471

    Article  Google Scholar 

  7. Mark, H.: The interaction of a reflected shock wave with the boundary layer in a shock tube. NACA-TM-1418, National Advisory Committee for Aeronautics (1958)

  8. Strehlow, R.A., Cohen, A.: Limitations of the reflected shock technique for studying fast chemical reactions and its application to the observation of relaxation in nitrogen and oxygen. J. Chem. Phys. 30(1), 257–265 (1959). https://doi.org/10.1063/1.1729883

    Article  Google Scholar 

  9. Davies, L.: Influence of reflected shock and boundary-layer interaction on shock-tube flows. Phys. Fluids 12(5), I–37 (1969). https://doi.org/10.1063/1.1692625

    Article  Google Scholar 

  10. Voevodsky, V., Soloukhin, R.: On the mechanism and explosion limits of hydrogen–oxygen chain self-ignition in shock waves. Proc. Combust. Inst. 10(1), 279–283 (1965). https://doi.org/10.1016/s0082-0784(65)80173-4

    Article  Google Scholar 

  11. Berets, D.J., Greene, E.F., Kistiakowsky, G.B.: Gaseous detonations. I. Stationary waves in hydrogen–oxygen mixtures\(^1\). J. Am. Chem. Soc. 72(3), 1080–1086 (1950). https://doi.org/10.1021/ja01159a008

    Article  Google Scholar 

  12. Fay, J.A.: Some experiments on the initiation of detonation in \(2{\text{ H }}_2{-}{\text{ O }}_2\) mixtures by uniform shock waves. Proc. Combust. Inst. 4(1), 501–507 (1953). https://doi.org/10.1016/s0082-0784(53)80071-8

    Article  Google Scholar 

  13. Steinberg, M., Kaskan, W.: The ignition of combustible mixtures by shock waves. Proc. Combust. Inst. 5(1), 664–672 (1955). https://doi.org/10.1016/s0082-0784(55)80092-6

    Article  Google Scholar 

  14. Oran, E., Young, T., Boris, J., Cohen, A.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48, 135–148 (1982). https://doi.org/10.1016/0010-2180(82)90123-7

    Article  Google Scholar 

  15. Oran, E.S., Gamezo, V.N.: Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148(1–2), 4–47 (2007). https://doi.org/10.1016/j.combustflame.2006.07.010

    Article  Google Scholar 

  16. Ihme, M., Sun, Y., Deiterding, R.: Detailed simulations of shock-bifurcation and ignition of an argon-diluted hydrogen/oxygen mixture in a shock tube. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine (Dallas/Ft. Worth Region), TX, AIAA Paper 2013-0538 (2013). https://doi.org/10.2514/6.2013-538

  17. Grogan, K.P., Ihme, M.: Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proc. Combust. Inst. 35(2), 2181–2189 (2015). https://doi.org/10.1016/j.proci.2014.07.074

    Article  Google Scholar 

  18. Khokhlov, A., Austin, J., Knisely, A.: Development of hot spots and ignition behind reflected shocks in \(2{\text{ H }}_2 + {\text{ O }}_2\). Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, ICDERS, Leeds, UK, Paper 020 (2015)

  19. Dziemińska, E., Hayashi, A.K.: Auto-ignition and DDT driven by shock wave—boundary layer interaction in oxyhydrogen mixture. Int. J. Hydrogen Energy 38(10), 4185–4193 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.111

    Article  Google Scholar 

  20. Proch, F., Kempf, A.M.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161(10), 2627–2646 (2014). https://doi.org/10.1016/j.combustflame.2014.04.010

    Article  Google Scholar 

  21. Rittler, A., Deng, L., Wlokas, I., Kempf, A.: Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis. Proc. Combust. Inst. 36(1), 1077–1087 (2017). https://doi.org/10.1016/j.proci.2016.08.005

    Article  Google Scholar 

  22. Rieth, M., Proch, F., Rabaçal, M., Franchetti, B., Marincola, F.C., Kempf, A.: Flamelet LES of a semi-industrial pulverized coal furnace. Combust. Flame 173, 39–56 (2016). https://doi.org/10.1016/j.combustflame.2016.07.013

    Article  Google Scholar 

  23. Nguyen, T., Kempf, A.M.: Investigation of numerical effects on the flow and combustion in LES of ICE. Oil Gas Sci. Technol. 72(4), 25 (2017). https://doi.org/10.2516/ogst/2017023

    Article  Google Scholar 

  24. Poinsot, T.J., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Aquaprint, Bordeaux (2012)

    Google Scholar 

  25. Williamson, J.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980). https://doi.org/10.1016/0021-9991(80)90033-9

    Article  MathSciNet  MATH  Google Scholar 

  26. Kitamura, K., Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM\(^+\)-up for high resolution unsteady flow simulations. Comput. Fluids 126, 41–57 (2016). https://doi.org/10.1016/j.compfluid.2015.11.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Suresh, A., Huynh, H.: Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136(1), 83–99 (1997). https://doi.org/10.1006/jcph.1997.5745

    Article  MathSciNet  MATH  Google Scholar 

  28. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011). https://doi.org/10.1063/1.3623274

    Article  Google Scholar 

  29. Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.4.0 (2017). https://doi.org/10.5281/zenodo.170284

  30. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (1960)

    Google Scholar 

  31. Peters, N., Warnatz, J. (eds.): Numerical Methods in Laminar Flame Propagation. Vieweg+Teubner Verlag, Braunschweig (1982). https://doi.org/10.1007/978-3-663-14006-1

    Google Scholar 

  32. Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow. Wiley, New York (2003). https://doi.org/10.1002/0471461296

    Book  Google Scholar 

  33. Cohen, S.D., Hindmarsh, A.C., Dubois, P.F.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2), 138 (1996). https://doi.org/10.1063/1.4822377

    Article  Google Scholar 

  34. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005). https://doi.org/10.1145/1089014.1089020

  35. Conaire, M.Ó., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36(11), 603–622 (2004). https://doi.org/10.1002/kin.20036

    Article  Google Scholar 

  36. Wang, L., Peters, N.: The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554(1), 457–475 (2006). https://doi.org/10.1017/s0022112006009128

    Article  MATH  Google Scholar 

  37. Weber, Y.S., Oran, E.S., Boris, J.P., Anderson, J.D.: The numerical simulation of shock bifurcation near the end wall of a shock tube. Phys. Fluids 7(10), 2475–2488 (1995). https://doi.org/10.1063/1.868691

    Article  MATH  Google Scholar 

  38. Matsuo, K., Kawagoe, S., Kage, K.: The interaction of a reflected shock wave with the boundary layer in a shock tube. Bull. JSME 17(110), 1039–1046 (1974). https://doi.org/10.1299/jsme1958.17.1039

    Article  Google Scholar 

  39. Lamnaouer, M., Kassab, A., Divo, E., Polley, N., Garza-Urquiza, R., Petersen, E.: A conjugate axisymmetric model of a high-pressure shock-tube facility. Int. J. Numer. Methods Heat Fluid Flow 24(4), 873–890 (2014). https://doi.org/10.1108/hff-02-2013-0070

    Article  Google Scholar 

  40. Hanson, R.K., Pang, G.A., Chakraborty, S., Ren, W., Wang, S., Davidson, D.F.: Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves. Combust. Flame 160(9), 1550–1558 (2013). https://doi.org/10.1016/j.combustflame.2013.03.026

    Article  Google Scholar 

  41. Fieweger, K., Blumenthal, R., Adomeit, G.: Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure. Combust. Flame 109(4), 599–619 (1997). https://doi.org/10.1016/s0010-2180(97)00049-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by DFG Grant KE 1751/8-1, the computing time on magnitUDE granted by the Center for Computational Sciences and Simulation of the Universität of Duisburg-Essen through DFG INST 20876/209-1 FUGG, INST 20876/243-1 FUGG at the Zentrum für Informations- und Mediendienste, and the computing time on the supercomputer HazelHen (ACID 44116). We also want to thank Elaine Oran for inspiring discussions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Lipkowicz.

Additional information

Communicated by D. Zeitoun and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipkowicz, J.T., Wlokas, I. & Kempf, A.M. Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes. Shock Waves 29, 511–521 (2019). https://doi.org/10.1007/s00193-018-0867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0867-4

Keywords

Navigation