Skip to main content
Log in

Drag reduction in transonic shock-wave/boundary-layer interaction using porous medium: a computational study

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A computational study has been carried out to assess the effectiveness of a porous medium as a passive control device suitable for reducing the drag in a normal-shock-wave/boundary-layer interaction at transonic speeds with a view toward application in aircraft wings. Reduction in overall drag is achieved via recirculation inside the porous medium, which primarily weakens the shock structure and hence reduces the wave drag. The study has been carried out for a Mach 1.3 normal-shock-wave/boundary-layer interaction on a flat plate in the presence of a porous medium beneath the region of interaction. The computations are performed as steady-state RANS calculations using Menter’s SST \(k-\omega /k-\epsilon \) model for turbulence closure. A parametric study that investigates the dependency of the effectiveness of control on dimensions of the cavity (length and depth), relative position of the cavity, and porosity of the medium has been carried out. It is observed that the change in overall drag is pronounced for parameters which result in significant changes to the size of the lambda-shock structure, such as the length of the cavity upstream of the inviscid shock location. Among the parameters investigated, porosity is seen to strongly affect the boundary-layer properties, with increase in porosity resulting in higher viscous drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Computation time is approximately quadrupled with each level of refinement.

  2. The experimental data were provided to us by Holger Babinsky (personal communication).

  3. The value of S is kept close to 2 to match earlier configurations of porous medium.

Abbreviations

D :

Diameter of circle in porous medium, mm

P :

Pressure, Pa

\(P_0\) :

Total pressure, Pa

\({\overline{P}_0}\) :

Mass-averaged total pressure at a stream-wise location, Pa

\({\overline{P}}_{0\mathrm{saving}}\) :

Mass-averaged total pressure saving at a stream-wise location

p :

Observed order of convergence

S :

Aspect ratio

\(S_1\) :

Distance between centers of circles along x-direction, mm

\(S_2\) :

Distance between centers of circles along y-direction, mm

T :

Temperature, K

u :

Velocity of fluid, m/s

x :

Stream-wise direction

y :

Wall/flow normal direction

\(\delta \) :

Boundary-layer thickness, mm

\(\delta ^*\) :

Boundary-layer displacement thickness, mm

\(\varTheta \) :

Boundary-layer momentum thickness, mm

\(\theta \) :

Choking plate angle, \(^{\circ }\)

\(\rho \) :

Density, \(\hbox {kg/m}^3\)

\(\phi \) :

Porosity of porous medium

0:

Total/stagnation condition

1:

Parameters upstream of shock and/or control region

2:

Parameters downstream of shock and/or control region

\(\infty \) :

Free-stream condition

nc:

No-control case

wc:

With-control case

x :

Stream-wise component

y :

Wall/flow normal component

References

  1. Stanewsky, E., Délery, J., Fulker, J., Geißler, W. (eds.): EUROSHOCK—Drag Reduction by Passive Shock Control, Results of the Project EUROSHOCK, AER2-CT92-0049 Supported by the European Union, 1993–1995, Notes on Numerical Fluid Mechanics, vol. 56. Vieweg-Teubner Verlag, Wiesbaden (1997). https://doi.org/10.1007/978-3-322-90711-0

  2. Stanewsky, E., Délery, J., Fulker, J., Matteis, P. (eds.): Drag Reduction by Shock and Boundary Layer Control, Results of the Project EUROSHOCK II, Supported by the European Union 1996–1999, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 80. Springer, Berlin (2002). https://doi.org/10.1007/978-3-540-45856-2

  3. Bahi, L., Ross, J., Nagamatsu, H.: Passive shock wave/boundary layer control for transonic airfoil drag reduction. 21st Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1983-0137 (1983). https://doi.org/10.2514/6.1983-137

  4. McCormick, D.C.: Shock/boundary-layer interaction control with vortex generators and passive cavity. AIAA J. 31(1), 91–96 (1993). https://doi.org/10.2514/3.11323

    Article  Google Scholar 

  5. Bur, R., Corbel, B., Délery, J.: Study of passive control in a transonic shock wave/boundary-layer interaction. AIAA J. 36(3), 394–400 (1998). https://doi.org/10.2514/2.376

    Article  Google Scholar 

  6. Gillan, M.: Computational analysis of drag reduction and buffet alleviation in viscous transonic flow over porous airfoils. 11th Applied Aerodynamics Conference, Monterey, CA, AIAA Paper 1993-3419-CP (1993). https://doi.org/10.2514/6.1993-3419

  7. Nagamatsu, H.T., Orozco, R.D., Ling, D.C.: Porosity effect on supercritical airfoil drag reduction by shock wave/boundary layer control. 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference, Snowmass, CO, AIAA Paper 1984-1682 (1984). https://doi.org/10.2514/6.1984-1682

  8. Raghunathan, S.: Passive control of shock-boundary layer interaction. Prog. Aerosp. Sci. 25(3), 271–296 (1988). https://doi.org/10.1016/0376-0421(88)90002-4

    Article  Google Scholar 

  9. Raghunathan, S., McIlwain, S.T.: Further investigations of transonic shock-wave boundary-layer interaction with passive control. J. Aircr. 27(1), 60–65 (1990). https://doi.org/10.2514/3.45896

    Article  Google Scholar 

  10. Mineck, R.E., Hartwich, P.M.: Effect of full-chord porosity on aerodynamic characteristics of the NACA 0012 airfoil. Technical Report NASA-TP-3591, National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (1996)

  11. Doerffer, P., Szulc, O., Bohning, R.: Shock wave smearing by passive control. J. Therm. Sci. 15(1), 43–47 (2006). https://doi.org/10.1007/s11630-006-0043-5

    Article  MATH  Google Scholar 

  12. Srinivasan, K.R., Loth, E., Dutton, C.J.: Aerodynamics of recirculating flow control devices for normal shock/boundary-layer interactions. AIAA J. 44(4), 751–763 (2006). https://doi.org/10.2514/1.13115

    Article  Google Scholar 

  13. Jixiang, S., Ling, Z., Xin, P., Shidong, Z.: Computational analysis on porosity effect on aerodynamic characteristic of supercritical airfoil. Fifth International Conference on Intelligent Systems Design and Engineering Applications, pp. 310–313, Hunan (2014). https://doi.org/10.1109/ISDEA.2014.76

  14. Zhou, L., Chen, D., Tao, Y., Liu, G., Song, S., Zhong, S.: Passive shock wave/boundary layer control of wing at transonic speeds. Theor. Appl. Mech. Lett. 7(6), 325–330 (2017). https://doi.org/10.1016/j.taml.2017.11.006

    Article  Google Scholar 

  15. Birkemeyer, J., Rosemann, H., Stanewsky, E.: Shock control on a swept wing. Aerosp. Sci. Technol. 4(3), 147–156 (2000). https://doi.org/10.1016/S1270-9638(00)00128-0

    Article  MATH  Google Scholar 

  16. Ogawa, H., Babinsky, H., Pätzold, M., Lutz, T.: Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings. AIAA J. 46(6), 1442–1452 (2008). https://doi.org/10.2514/1.32049

    Article  Google Scholar 

  17. Yagiz, B., Kandil, O., Pehlivanoglu, Y.V.: Drag minimization using active and passive flow control techniques. Aerosp. Sci. Technol. 17(1), 21–31 (2012). https://doi.org/10.1016/j.ast.2011.03.003

    Article  Google Scholar 

  18. Bruce, P.J.K., Colliss, S.P.: Review of research into shock control bumps. Shock Waves 25, 451–471 (2015). https://doi.org/10.1007/s00193-014-0533-4

    Article  Google Scholar 

  19. Mazaheri, K., Kiani, K., Nejati, A., Zeinalpour, M., Taheri, R.: Optimization and analysis of shock wave/boundary layer interaction for drag reduction by shock control bump. Aerosp. Sci. Technol. 42, 196–208 (2015). https://doi.org/10.1016/j.ast.2015.01.007

    Article  Google Scholar 

  20. Colliss, S.P., Babinsky, H., Nübler, K., Lutz, T.: Joint experimental and numerical approach to three-dimensional shock control bump research. AIAA J. 52(2), 436–446 (2014). https://doi.org/10.2514/1.j052582

    Article  Google Scholar 

  21. Jinks, E., Bruce, P., Santer, M.: Optimisation of adaptive shock control bumps with structural constraints. Aerosp. Sci. Technol. 77, 332–343 (2018). https://doi.org/10.1016/j.ast.2018.03.018

    Article  Google Scholar 

  22. Hafenrichter, E.S., Lee, Y., Dutton, J.C., Loth, E.: Normal shock/boundary-layer interaction control using aeroelastic mesoflaps. J. Propuls. Power 19(3), 464–472 (2003). https://doi.org/10.2514/2.6130

    Article  Google Scholar 

  23. Page, M.A., Riley, N.: The free interaction in a supersonic flow over a porous wall. Q. J. Mech. Appl. Math. 38(1), 79–92 (1985). https://doi.org/10.1093/qjmam/38.1.79

    Article  MATH  Google Scholar 

  24. Nair, K.A., Sameen, A., Lal, S.A.: Passive boundary layer flow control using porous lamination. Transp. Porous Media 124(2), 533–551 (2018). https://doi.org/10.1007/s11242-018-1083-5

    Article  MathSciNet  Google Scholar 

  25. Sahoo, A., Roy, S., Ghosh, S.: Numerical investigation of transonic flow over porous medium using immersed boundary method. AIAA Applied Aerodynamics Conference, Atlanta, GA, AIAA Paper 2018-3339 (2018). https://doi.org/10.2514/6.2018-3339

  26. Hamed, A., Li, Z., Manavasi, S., Nelson, C.: Flow characteristics through porous bleed in supersonic turbulent boundary layers. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, AIAA Paper 2009-1260 (2009). https://doi.org/10.2514/6.2009-1260

  27. Délery, J., Bur, R.: The physics of shock wave/boundary layer interaction control: last lessons learned. European Congress on Computational Methods in Applied Sciences and Engineering, pp. 11–14, Barcelona (2000). https://doi.org/10.13140/2.1.4478.8169

  28. Babinsky, H., Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511842757

    Book  MATH  Google Scholar 

  29. Edney, B.: Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Technical Report 115, Aeronautical Research Inst. of Sweden, Stockholm, Sweden (1968)

  30. Jiang, R., Tian, Y., Liu, P.: Transonic buffet control by rearward buffet breather on supercritical airfoil and wing. Aerosp. Sci. Technol. 89, 204–219 (2019). https://doi.org/10.1016/j.ast.2019.03.043

    Article  Google Scholar 

  31. Viswanath, P.R.: Shock-wave-turbulent-boundary-layer interaction and its control: a survey of recent developments. Sadhana 12, 45–104 (1988). https://doi.org/10.1007/BF02745660

    Article  Google Scholar 

  32. Bushnell, D.M.: Aircraft drag reduction—a review. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 217(1), 1–18 (2003). https://doi.org/10.1243/095441003763031789

    Article  Google Scholar 

  33. Rosemann, H.: Wave drag reduction concepts for transonic wings. European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä (2004)

    Google Scholar 

  34. Babinsky, H., Ogawa, H.: SBLI control for wings and inlets. Shock Waves 18, 89–96 (2008). https://doi.org/10.1007/s00193-008-0149-7

    Article  Google Scholar 

  35. Jahanmiri, M.: Aircraft drag reduction: an overview. Technical Report 2011:02, Chalmers University of Technology, Department of Applied Mechanics, Göteborg, Sweden (2011)

  36. Kaushik, M., Humrutha, G.: Review of shock-boundary layer controlled interactions studies in high speed intakes. J. Aerosp. Eng. Technol. 5(3), 1–14 (2015). https://doi.org/10.37591/.v5i3.632

    Article  Google Scholar 

  37. Gaitonde, D.V.: Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 80–99 (2015). https://doi.org/10.1016/j.paerosci.2014.09.002

    Article  Google Scholar 

  38. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  Google Scholar 

  39. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971). https://doi.org/10.1002/sapm197150293

    Article  MATH  Google Scholar 

  40. Roy, C.J., Edwards, J.R.: Numerical simulation of a three-dimensional flame/shock wave interaction. AIAA J. 38(5), 745–754 (2000). https://doi.org/10.2514/2.1035

    Article  Google Scholar 

  41. Edwards, J.R., Choi, J.I., Boles, J.A.: Large Eddy/Reynolds-averaged Navier–Stokes simulation of a Mach 5 compression–corner interaction. AIAA J. 46(4), 977–991 (2008). https://doi.org/10.2514/1.32240

    Article  Google Scholar 

  42. Choi, J.I., Edwards, J.R., Baurle, R.A.: Compressible boundary-layer predictions at high Reynolds number using hybrid LES/RANS methods. AIAA J. 47(9), 2179–2193 (2009). https://doi.org/10.2514/1.41598

    Article  Google Scholar 

  43. Ghosh, S., Choi, J.I., Edwards, J.R.: Numerical simulations of effects of micro vortex generators using immersed-boundary methods. AIAA J. 48(1), 92–103 (2010). https://doi.org/10.2514/1.40049

    Article  Google Scholar 

  44. Ghosh, S., Choi, J.I., Edwards, J.R.: Simulation of shock/boundary-layer interactions with bleed using immersed-boundary methods. J. Propuls. Power 26(2), 203–214 (2010). https://doi.org/10.2514/1.45297

    Article  Google Scholar 

  45. Ghosh, S., Edwards, J.R., Choi, J.I.: Numerical simulation of the effects of mesoflaps in controlling shock/boundary-layer interactions. J. Propuls. Power 28(5), 955–970 (2012). https://doi.org/10.2514/1.B34297

    Article  Google Scholar 

  46. Edwards, J.R.: A low-diffusion flux-splitting scheme for Navier–Stokes calculations. Comput. Fluids 26(6), 635–659 (1997). https://doi.org/10.1016/S0045-7930(97)00014-5

    Article  MathSciNet  MATH  Google Scholar 

  47. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984). https://doi.org/10.1016/0021-9991(84)90143-8

    Article  MATH  Google Scholar 

  48. Menter, F.R.: Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  49. Varma, D., Ghosh, S.: Flow control in Mach 4.0 inlet by slotted wedge-shaped vortex generators. J. Propuls. Power 33(6), 1428–1438 (2017). https://doi.org/10.2514/1.B36314

    Article  Google Scholar 

  50. Choi, J., Oberoi, R.C., Edwards, J.R., Rosati, J.A.: An immersed boundary method for complex incompressible flows. J. Comput. Phys. 224(2), 757–784 (2007). https://doi.org/10.1016/j.jcp.2006.10.032

    Article  MathSciNet  MATH  Google Scholar 

  51. Sharma, P., Varma, D., Ghosh, S.: Novel vortex generator for mitigation of shock-induced flow separation. J. Propuls. Power 32(5), 1264–1274 (2016). https://doi.org/10.2514/1.B35962

    Article  Google Scholar 

  52. Sandhu, J.P.S., Ghosh, S., Subramanian, S., Sharma, P.: Evaluation of ramp-type micro vortex generators using swirl center tracking. AIAA J. 56(9), 3449–3459 (2018). https://doi.org/10.2514/1.j056796

    Article  Google Scholar 

  53. Bharadwaj, A.S., Ghosh, S., Joseph, C.: Interpolation Techniques for Data Reconstruction at Surface in Immersed Boundary Method. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-1427 (2017). https://doi.org/10.2514/6.2017-1427

  54. Roy, S., Subramaniam, K., Ghosh, S.: Positioning of normal shock in a novel constant-area test section: a numerical study. AIAA J. 57(12), 5582–5587 (2019). https://doi.org/10.2514/1.J057834

    Article  Google Scholar 

  55. Seddon, J.: The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation. Aeronaut. Res. Counc. Reports Memo. 3502, Ministry of Technology (1960)

  56. Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. J. Turbul. 6, 16 (2005). https://doi.org/10.1080/14685240500209775

    Article  Google Scholar 

  57. Ogawa, H., Babinsky, H.: Wind-tunnel setup for investigations of normal shock wave/boundary layer interaction control. AIAA J. 44(11), 2803–2805 (2006). https://doi.org/10.2514/1.24370

    Article  Google Scholar 

  58. Bhattacharya, A., Calmidi, V., Mahajan, R.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45(5), 1017–1031 (2002). https://doi.org/10.1016/S0017-9310(01)00220-4

    Article  MATH  Google Scholar 

  59. Boomsma, K., Poulikakos, D.: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int. J. Heat Mass Transf. 44(4), 827–836 (2001). https://doi.org/10.1016/S0017-9310(00)00123-X

    Article  MATH  Google Scholar 

  60. Zhao, J., Zhang, M., Zhu, Y., Li, X., Wang, L., Hu, J.: A novel optimization design method of additive manufacturing oriented porous structures and experimental validation. Mater. Des. 163, 107550 (2019). https://doi.org/10.1016/j.matdes.2018.107550

    Article  Google Scholar 

  61. Maiti, A., Small, W., Lewicki, J.P., Weisgraber, T.H., Duoss, E.B., Chinn, S.C., Pearson, M.A., Spadaccini, C.M., Maxwell, R.S., Wilson, T.S.: 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response. Sci. Rep. 6, 24871 (2016). https://doi.org/10.1038/srep24871

    Article  Google Scholar 

  62. Jafari, D., Wits, W.W., Geurts, B.J.: Metal 3D-printed wick structures for heat pipe application: capillary performance analysis. Appl. Therm. Eng. 143, 403–414 (2018). https://doi.org/10.1016/j.applthermaleng.2018.07.111

    Article  Google Scholar 

  63. Furumoto, T., Koizumi, A., Alkahari, M.R., Anayama, R., Hosokawa, A., Tanaka, R., Ueda, T.: Permeability and strength of a porous metal structure fabricated by additive manufacturing. J. Mater. Process. Technol. 219, 10–16 (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.043

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jack R. Edwards at North Carolina State University for letting them use his REACTMB code for this study. The authors also express their thanks to Holger Babinsky at University of Cambridge, for providing data related to the no-control experiments. Computing facilities at the VIRGO super-cluster are provided by the High Performance Computing Division, at Indian Institute of Technology Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Hadjadj.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Sandhu, J.P.S. & Ghosh, S. Drag reduction in transonic shock-wave/boundary-layer interaction using porous medium: a computational study. Shock Waves 31, 117–132 (2021). https://doi.org/10.1007/s00193-021-01009-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01009-7

Keywords

Navigation