Skip to main content

Advertisement

Log in

Osteoporosis after spinal cord injury

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 13 May 2006

Abstract

Osteoporosis is a known consequence of spinal cord injury (SCI) and occurs in almost every SCI patient. It manifests itself as an increase in the incidence of lower extremity fractures. The pattern of bone loss seen in SCI patients is different from that usually encountered with endocrine disorders and disuse osteoporosis. In general, there is no demineralization in supralesional areas following SCI. Several factors appear to have a major influence on bone mass in SCI individuals, such as the degree of the injury, muscle spasticity, age, sex and duration after injury. At the lumbar spine, bone demineralization remains relatively low compared to that of the long bones in the sublesional area. A new steady state level between bone resorption and formation is reestablished about 2 years after SCI. SCI may not only cause bone loss, but also alter bone structure and microstructure. Trabecular bone is more affected than cortical bone in the SCI population. Numerous clinical series have reported a high incidence ranging from 1 to 34% of lower extremity fractures in SCI patients. The pathogenesis of osteoporosis after SCI remains complex and perplexing. Disuse may play an important role in the pathogenesis of osteoporosis, but neural factors also appear to be important. SCI also leads to impaired calcium and phosphate metabolism and the parathyroid hormone (PTH)-vitamin D axis. Pharmacologic intervention for osteoporosis after SCI includes calcium, phosphate, vitamin D, calcitonin and biphosphonates. However, the concomitant prescription of bone-active drugs for the prevention and treatment of osteoporosis remains low, despite the availability of effective therapies. Functional stimulated exercises may contribute to the prevention of bone loss to some extent. In addition, many unanswered questions remain about the pathogenesis of osteoporosis and its clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chantraine A, Nusgens B, Lapiere CM (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327

    PubMed  Google Scholar 

  2. Biering-Sorensen F, Bohr H, Schaadt O (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26:293–301

    PubMed  Google Scholar 

  3. Griffiths HJ, Zimmerman RE (1973) The use of photon densitometry to evaluate bone mineral in a group of patients with spinal cord injury. Paraplegia 10:279–284

    PubMed  Google Scholar 

  4. Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ (2001) Osteoporosis in patients with paralysis after spinal cord injury: a cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 121:75–78

    Article  PubMed  Google Scholar 

  5. Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39:208–214

    Article  PubMed  Google Scholar 

  6. Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD (2002) Quantitative ultrasound assessment of acute bone loss following spinal cord injury: a longitudinal pilot study. Osteoporos Int 13:586–592

    Article  PubMed  Google Scholar 

  7. Vlychou M, Papadaki PJ, Zavras GM, Vasiou K, Kelekis N, Malizos KN, Fezoulidis IB (2003) Paraplegia-related alterations of bone density in forearm and hip in Greek patients after spinal cord injury. Disabil Rehabil 25:324–330

    Article  PubMed  Google Scholar 

  8. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg [Am] 83:1195–1200

    Google Scholar 

  9. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, Weinstein DA (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371–378

    Article  PubMed  Google Scholar 

  10. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27:305–309

    Article  PubMed  Google Scholar 

  11. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335

    PubMed  Google Scholar 

  12. Finsen V, Indredavik B, Fougner KJ (1992) Bone mineral and hormone status in paraplegics. Paraplegia 30:343–347

    PubMed  Google Scholar 

  13. Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32

    Article  PubMed  Google Scholar 

  14. de Bruin ED, Dietz V, Dambacher MA, Stussi E (2000) Longitudinal changes in bone in men with spinal cord injury. Clin Rehabil 14:145–152

    Article  PubMed  Google Scholar 

  15. Demirel G, Yilmaz H, Paker N, Onel S (1998) Osteoporosis after spinal cord injury. Spinal Cord 36:822–825

    Article  PubMed  Google Scholar 

  16. Tsuzuku S, Ikegami Y, Yabe K (1999) Bone mineral density differences between paraplegic and quadriplegic patients: a cross-sectional study. Spinal Cord 37:358–361

    Article  PubMed  Google Scholar 

  17. Garland DE, Adkins RH, Kushwaha V, Stewart C (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27:202–206

    PubMed  Google Scholar 

  18. Eser P, Frotzler A, Zehnder Y, Schiessl H, Denoth J (2005) Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals. Osteoporos Int 16:26–34

    Article  PubMed  Google Scholar 

  19. Gross M, Roberts JG, Foster J, Shankardass K, Webber CE (1987) Calcaneal bone density reduction in patients with restricted mobility. Arch Phys Med Rehabil 68:158–161

    PubMed  Google Scholar 

  20. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P (1995) Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 33:674-677

    PubMed  Google Scholar 

  21. Panin N, Gorday WJ, Paul BJ (1971) Osteoporosis in hemiplegia. Stroke 2:41–47

    PubMed  Google Scholar 

  22. Szollar SM, Martin EM, Parthemore JG, Sartoris DJ, Deftos LJ (1997) Densitometric patterns of spinal cord injury associated bone loss. Spinal Cord 35:374–382

    Article  PubMed  Google Scholar 

  23. Clasey JL, Janowiak AL, Gater DR (2004) Relationship between regional bone density measurements and the time since injury in adults with spinal cord injuries. Arch Phys Med Rehabil 85:59–64

    Article  PubMed  Google Scholar 

  24. Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I (2000) Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37:225–233

    PubMed  Google Scholar 

  25. Bauman WA, Spungen AM, Wang J, Pierson RN Jr, Schwartz E (1999) Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 10:123–127

    Article  PubMed  Google Scholar 

  26. Wood DE, Dunkerley AL, Tromans AM (2001) Results from bone mineral density scans in twenty-two complete lesion paraplegics. Spinal Cord 39:145–148

    Article  PubMed  Google Scholar 

  27. Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S (1993) Effect of “standing” on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74:73–78

    PubMed  Google Scholar 

  28. de Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussi E (1999) Changes of tibia bone properties after spinal cord injury: effects of early intervention. Arch Phys Med Rehabil 80:214–220

    Article  PubMed  Google Scholar 

  29. Turner CH (1999) Site-specific skeletal effects of exercise: importance of interstitial fluid pressure. Bone 24:161–162

    Article  PubMed  Google Scholar 

  30. Bruin ED, Vanwanseele B, Dambacher MA, Dietz V, Stussi E (2005) Long-term changes in the tibia and radius bone mineral density following spinal cord injury. Spinal Cord 43:96–101

    Article  PubMed  Google Scholar 

  31. Garland DE, Adkins RH, Scott M, Singh H, Massih M, Stewart C (2004) Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury. J Spinal Cord Med 27:207–211

    PubMed  Google Scholar 

  32. Jones LM, Legge M, Goulding A (2002) Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralisation of the lower body. Spinal Cord 40:230–235

    Article  PubMed  Google Scholar 

  33. Uebelhart D, Hartmann D, Vuagnat H, Castanier M, Hachen HJ, Chantraine A (1994) Early modifications of biochemical markers of bone metabolism in spinal cord injury patients. A preliminary study. Scand J Rehabil Med 26:197–202

    PubMed  Google Scholar 

  34. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189

    Article  PubMed  Google Scholar 

  35. Ogilvie C, Bowker P, Rowley DI (1993) The physiological benefits of paraplegic orthotically aided walking. Paraplegia 31:111–115

    PubMed  Google Scholar 

  36. Sloan KE, Bremner LA, Byrne J, Day RE, Scull ER (1994) Musculoskeletal effects of an electrical stimulation induced cycling programme in the spinal injured. Paraplegia 32:407–415

    PubMed  Google Scholar 

  37. Leslie WD, Nance PW (1993) Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil 74:960–964

    PubMed  Google Scholar 

  38. Szollar SM, Martin EM, Parthemore JG, Sartoris DJ, Deftos LJ (1997) Demineralization in tetraplegic and paraplegic man over time. Spinal Cord 35:223–228

    Article  PubMed  Google Scholar 

  39. Liu CC, Theodorou DJ, Theodorou SJ, Andre MP, Sartoris DJ, Szollar SM, Martin EM, Deftos LJ (2000) Quantitative computed tomography in the evaluation of spinal osteoporosis following spinal cord injury. Osteoporos Int 11:889–896

    Article  PubMed  Google Scholar 

  40. Minaire P, Neunier P, Edouard C, Bernard J, Courpron P, Bourret J (1974) Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif Tissue Res 17:57–73

    PubMed  Google Scholar 

  41. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19:48–55

    PubMed  Google Scholar 

  42. Slade JM, Bickel CS, Modlesky CM, Majumdar S, Dudley GA (2005) Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 16:263–272

    Article  PubMed  Google Scholar 

  43. Ryan PJ (1997) Overview of role of BMD measurements in managing osteoporosis. Semin Nucl Med 27:197–209

    PubMed  Google Scholar 

  44. Jergas M, Gluer CC (1997) Assessment of fracture risk by bone density measurements. Semin Nucl Med 27:261–275

    PubMed  Google Scholar 

  45. Blake GM, Gluer CC, Fogelman I (1997) Bone densitometry: current status and future prospects. Br J Radiol 70:S177–S186

    PubMed  Google Scholar 

  46. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423

    PubMed  Google Scholar 

  47. Ingram RR, Suman RK, Freeman PA (1989) Lower limb fractures in the chronic spinal cord injured patient. Paraplegia 27:133–139

    PubMed  Google Scholar 

  48. Comarr AE, Hutchinson RH, Bors E (1962) Extremity fractures of patients with spinal cord injuries. Am J Surg 103:732–739

    Article  PubMed  Google Scholar 

  49. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36:790–796

    Article  PubMed  Google Scholar 

  50. Frisbie JH (1997) Fractures after myelopathy: the risk quantified. J Spinal Cord Med 20:66–69

    PubMed  Google Scholar 

  51. Minaire P, Edouard C, Arlot M, Meunier PJ (1984) Marrow changes in paraplegic patients. Calcif Tissue Int 36:338–340

    PubMed  Google Scholar 

  52. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg [Am] 59:954–962

    Google Scholar 

  53. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    Article  PubMed  Google Scholar 

  54. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40

    PubMed  Google Scholar 

  55. Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15:20–23

    PubMed  Google Scholar 

  56. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    PubMed  Google Scholar 

  57. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    PubMed  Google Scholar 

  58. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur: Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    Article  PubMed  Google Scholar 

  59. Siffert RS, Luo GM, Cowin SC, Kaufman JJ (1996) Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia. Bone 18:197–206

    Article  PubMed  Google Scholar 

  60. de Bruin ED, Herzog R, Rozendal RH, Michel D, Stussi E (2000) Estimation of geometric properties of cortical bone in spinal cord injury. Arch Phys Med Rehabil 81:150–156

    PubMed  Google Scholar 

  61. Giangregorio LM, Webber CE (2004) Speed of sound in bone at the tibia: is it related to lower limb bone mineral density in spinal-cord-injured individuals? Spinal Cord 42:141–145

    Article  PubMed  Google Scholar 

  62. Semb H (1966) Experimental disuse osteoporosis. I. Acid-base status in intramedullary blood from immobilized rabbit tibial bones. Acta Soc Med Ups 71:83–95

    PubMed  Google Scholar 

  63. Hardt AB (1972) Early metabolic responses of bone to immobilization. J Bone Joint Surg [Am] 54:119–124

    Google Scholar 

  64. Chantraine A, van Ouwenaller C, Hachen HJ, Schinas P (1979) Intra-medullary pressure and intra-osseous phlebography in paraplegia. Paraplegia 17:391–399

    PubMed  Google Scholar 

  65. Morley JE, Distiller LA, Lissoos I, Lipschitz R, Kay G, Searle DL, Katz M (1979) Testicular function in patients with spinal cord damage. Horm Metab Res 11:679–682

    PubMed  Google Scholar 

  66. Naftchi NE, Viau AT, Sell GH, Lowman EW (1980) Pituitary-testicular axis dysfunction in spinal cord injury. Arch Phys Med Rehabil 61:402–405

    PubMed  Google Scholar 

  67. Nance PW, Shears AH, Givner ML, Nance DM (1985) Gonadal regulation in men with flaccid paraplegia. Arch Phys Med Rehabil 66:757–759

    PubMed  Google Scholar 

  68. Doty SB (1981) Morphological evidence of gap junctions between bone cells. Calcif Tissue Int 33:509–512

    PubMed  Google Scholar 

  69. Lanyon LE (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int 53:S102–S107

    Article  PubMed  Google Scholar 

  70. Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomech Eng 113:191–197

    PubMed  Google Scholar 

  71. Palumbo C, Palazzini S, Marotti G (1990) Morphological study of intercellular junctions during osteocyte differentiation. Bone 11:401–406

    Article  PubMed  Google Scholar 

  72. Rodan GA, Bourret LA, Harvey A, Mensi T (1975) Cyclic AMP and cyclic GMP: mediators of the mechanical effects on bone remodeling. Science 189:467–469

    PubMed  Google Scholar 

  73. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358

    Article  PubMed  Google Scholar 

  74. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850

    PubMed  Google Scholar 

  75. LeBlanc A, Schneider V, Krebs J, Evans H, Jhingran S, Johnson P (1987) Spinal bone mineral after 5 weeks of bed rest. Calcif Tissue Int 41:259–261

    PubMed  Google Scholar 

  76. Goemaere S, Van Laere M, De Neve P, Kaufman JM (1994) Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos Int 4:138–143

    Article  PubMed  Google Scholar 

  77. Grigoriev AI, Morukov BV, Oganov VS, Rakhmanov AS, Buravkova LB (1992) Effect of exercise and bisphosphonate on mineral balance and bone density during 360 day antiorthostatic hypokinesia. J Bone Miner Res 7:S449–S455

    PubMed  Google Scholar 

  78. Thoumie P, Le Claire G, Beillot J, Dassonville J, Chevalier T, Perrouin-Verbe B, Bedoiseau M, Busnel M, Cormerais A, Courtillon A (1995) Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation. Paraplegia 33:654–659

    PubMed  Google Scholar 

  79. Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78:799–803

    Article  PubMed  Google Scholar 

  80. Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I (1994) The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone 15:279–284

    Article  PubMed  Google Scholar 

  81. Maimoun L, Couret I, Micallef JP, Peruchon E, Mariano-Goulart D, Rossi M, Leroux JL, Ohanna F (2002) Use of bone biochemical markers with dual-energy X-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 51:958–963

    Article  PubMed  Google Scholar 

  82. Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, McWhinney B, Hickman PE (1998) Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 83:415–422

    Article  PubMed  Google Scholar 

  83. Bergmann P, Heilporn A, Schoutens A, Paternot J, Tricot A (1977) Longitudinal study of calcium and bone metabolism in paraplegic patients. Paraplegia 15:147–159

    PubMed  Google Scholar 

  84. Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE (1982) Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med 306:1136–1140

    PubMed  Google Scholar 

  85. Vaziri ND, Pandian MR, Segal JL, Winer RL, Eltorai I, Brunnemann S (1994) Vitamin D, parathormone and calcitonin profiles in persons with long-standing spinal cord injury. Arch Phys Med Rehabil 75:766–769

    PubMed  Google Scholar 

  86. Maynard FM (1986) Immobilization hypercalcemia following spinal cord injury. Arch Phys Med Rehabil 67:41–44

    PubMed  Google Scholar 

  87. Claus-Walker J, Campos RJ, Carter RE, Vallbona C, Lipscomb HS (1972) Calcium excretion in quadriplegia. Arch Phys Med Rehabil 53:14–20

    PubMed  Google Scholar 

  88. Tori JA, Hill LL (1978) Hypercalcemia in children with spinal cord injury. Arch Phys Med Rehabil 59:443–446

    PubMed  Google Scholar 

  89. Mechanick JI, Pomerantz F, Flanagan S, Stein A, Gordon WA, Ragnarsson KT (1997) Parathyroid hormone suppression in spinal cord injury patients is associated with the degree of neurologic impairment and not the level of injury. Arch Phys Med Rehabil 78:692–696

    Article  PubMed  Google Scholar 

  90. Bauman WA, Zhong YG, Schwartz E (1995) Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 44:1612–1616

    Article  PubMed  Google Scholar 

  91. Loomis WF (1967) Skin-pigment regulation of vitamin-D biosynthesis in man. Science 157:501–506

    PubMed  Google Scholar 

  92. Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19:317–366

    PubMed  Google Scholar 

  93. Hahn TJ, Hendin BA, Scharp CR, Haddad JG Jr (1972) Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med 287:900–904

    PubMed  Google Scholar 

  94. Demulder A, Guns M, Ismail A, Wilmet E, Fondu P, Bergmann P (1998) Increased osteoclast-like cells formation in long-term bone marrow cultures from patients with a spinal cord injury. Calcif Tissue Int 63:396–400

    Article  PubMed  Google Scholar 

  95. Pietschmann P, Pils P, Woloszczuk W, Maerk R, Lessan D, Stipicic J (1992) Increased serum osteocalcin levels in patients with paraplegia. Paraplegia 30:204–209

    PubMed  Google Scholar 

  96. Smith SM, Nillen JL, Leblanc A, Lipton A, Demers LM, Lane HW, Leach CS (1998) Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab 83:3584–3591

    Article  PubMed  Google Scholar 

  97. Lueken SA, Arnaud SB, Taylor AK, Baylink DJ (1993) Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J Bone Miner Res 8:1433–1438

    PubMed  Google Scholar 

  98. Inoue M, Tanaka H, Moriwake T, Oka M, Sekiguchi C, Seino Y (2000) Altered biochemical markers of bone turnover in humans during 120 days of bed rest. Bone 26:281–286

    Article  PubMed  Google Scholar 

  99. Price PA, Baukol SA (1980) 1,25-dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem 255:11660–11663

    PubMed  Google Scholar 

  100. Claus-Walker J, Singh J, Leach CS, Hatton DV, Hubert CW, Di Ferrante N (1977) The urinary excretion of collagen degradation products by quadriplegic patients and during weightlessness. J Bone Joint Surg [Am] 59:209–212

    Google Scholar 

  101. Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19:1071–1084

    Article  PubMed  Google Scholar 

  102. Goemaere S, Van Laere M, De Neve P, Kaufman JM (1994) Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos Int 4:138–143

    Article  PubMed  Google Scholar 

  103. BeDell KK, Scremin AM, Perell KL, Kunkel CF (1996) Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 75:29–34

    Article  PubMed  Google Scholar 

  104. Leeds EM, Klose KJ, Ganz W, Serafini A, Green BA (1990) Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil 71:207–209

    PubMed  Google Scholar 

  105. Pacy PJ, Hesp R, Halliday DA, Katz D, Cameron G, Reeve J (1988) Muscle and bone in paraplegic patients, and the effect of functional electrical stimulation. Clin Sci 75:481–487

    PubMed  Google Scholar 

  106. Mohr T, Podenphant J, Biering-Sorensen, F Galbo, H Thamsborg G, Kjaer M (1997) Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 61:22–25

    Article  PubMed  Google Scholar 

  107. Bloomfield SA, Mysiw WJ, Jackson RD (1996) Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone 19:61–68

    Article  PubMed  Google Scholar 

  108. Chow YW, Inman C, Pollintine P, Sharp CA, Haddaway MJ, el Masry W, Davie MW (1996) Ultrasound bone densitometry and dual energy X-ray absorptiometry in patients with spinal cord injury: a cross-sectional study. Spinal Cord 34:736–741

    PubMed  Google Scholar 

  109. Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E (2003) Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 33:412–419

    Article  PubMed  Google Scholar 

  110. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369

    PubMed  Google Scholar 

  111. Lee YH, Rah JH, Park RW, Park CI (2001) The effect of early therapeutic electrical stimulation on bone mineral density in the paralyzed limbs of the rabbit. Yonsei Med J 42:194–198

    PubMed  Google Scholar 

  112. Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD (2001) Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone 29:431–436

    Article  PubMed  Google Scholar 

  113. Schneider VS, McDonald J (1984) Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis. Calcif Tissue Int 36:S151–S154

    PubMed  Google Scholar 

  114. Hulley SB, Vogel JM, Donaldson CL, Bayers JH, Friedman RJ, Rosen SN (1971) The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. J Clin Invest 50:2506–2518

    PubMed  Google Scholar 

  115. Braddom RL, Erickson R, Johnson EW (1973) Ineffectiveness of calcitonin on osteoporosis in paraplegic rats. Arch Phys Med Rehabil 54:170–174

    PubMed  Google Scholar 

  116. Minaire P, Depassio J, Berard E, Meunier PJ, Edouard C, Pilonchery G, Goedert G (1987) Effects of clodronate on immobilization bone loss. Bone 8:S63–S68

    PubMed  Google Scholar 

  117. Carey DE, Raisz LG (1985) Calcitonin therapy in prolonged immobilization hypercalcemia. Arch Phys Med Rehabil 66:640–644

    PubMed  Google Scholar 

  118. Meythaler JM, Tuel SM, Cross LL (1993) Successful treatment of immobilization hypercalcemia using calcitonin and etidronate. Arch Phys Med Rehabil 74:316–319

    PubMed  Google Scholar 

  119. Pearson EG, Nance PW, Leslie WD, Ludwig S (1997) Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil 78:269–272

    Article  PubMed  Google Scholar 

  120. Merli GJ, McElwain GE, Adler AG, Martin JH, Roberts JD, Schnall B, Ditunno JF (1984) Immobilization hypercalcemia in acute spinal cord injury treated with etidronate. Arch Intern Med 144:1286–1288

    Article  PubMed  Google Scholar 

  121. Chappard D, Minaire P, Privat C, Berard E, Mendoza-Sarmiento J, Tournebise H, Basle MF, Audran M, Rebel A, Picot C, Gaud C (1995) Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res 10:112–118

    PubMed  Google Scholar 

  122. Nance PW, Schryvers O, Leslie W, Ludwig S, Krahn J, Uebelhart D (1999) Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 80:243–251

    Article  PubMed  Google Scholar 

  123. Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, Zach GA, Lippuner K (2004) Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 19:1067–1074

    PubMed  Google Scholar 

  124. Liberman UA, Weiss SR, Broll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis: The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333:1437–1443

    Article  PubMed  Google Scholar 

  125. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, Adami S, Weber K, Lorenc R, Pietschmann P, Vandormael K, Lombardi A (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–610

    Article  PubMed  Google Scholar 

  126. Sniger W, Garshick E (2002) Alendronate increases bone density in chronic spinal cord injury: a case report. Arch Phys Med Rehabil 83:139–140

    Article  PubMed  Google Scholar 

  127. Moran de Brito CM, Battistella LR, Saito ET, Sakamoto H (2005) Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord 43:341–348

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yang Dai.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00198-006-0138-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, SD., Dai, LY. & Jiang, LS. Osteoporosis after spinal cord injury. Osteoporos Int 17, 180–192 (2006). https://doi.org/10.1007/s00198-005-2028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-2028-8

Keywords

Navigation