Skip to main content
Log in

A whole genome linkage scan for QTLs underlying peak bone mineral density

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We conducted a whole genome linkage scan for quantitative trait loci (QTLs) underlying peak bone mineral density (PBMD). Our efforts identified several potential genomic regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.

Introduction

Peak bone mineral density (PBMD) is an important clinical risk predictor of osteoporosis and explains a large part of bone mineral density (BMD) variation.

Methods

To detect susceptive quantitative trait loci (QTLs) for PBMD variation including consideration of epistatic and sex-specific effects, we conducted a whole genome linkage scan (WGLS) for PBMD using 2,200 Caucasians from 207 pedigrees, aged 20–50 years. All the individuals were genotyped with 410 microsatellite markers. In addition to WGLS in the total combined sample of males and females, we conducted epistatic interaction analyses, and sex-specific subgroup linkage analyses.

Results

We identified several potential genomic regions that met the criteria for suggestive linkage. The most impressing region is 12p12 for hip PBMD (LOD = 2.79) in the total sample. Epistatic interaction analyses found a significant epistatic interaction between 12p12 and 22q13 (p = 0.0021) for hip PBMD. Additionally, we detected suggestive linkage evidence at 15q26 (LOD = 2.93), 2p13 (LOD = 2.64), and Xq27 (LOD = 2.64). Sex-specific analyses suggested the presence of sex-specific QTLs for PBMD variation.

Conclusions

Our efforts identified several potential regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Consensus Development Conference (1993) Bone mass and fracture risk. Am J Med 95:1S–78S

    Google Scholar 

  2. America’s Bone Health (2002) The state of osteoporosis and low bone mass in our nation. National Osteoporosis Foundation

  3. Orsini LS, Rousculp MD, Long SR, Wang S (2005) Health care utilization and expenditures in the United States: a study of osteoporosis-related fractures. Osteoporos Int 16:359–371

    Article  PubMed  Google Scholar 

  4. Heaney RP, Abrams S, Dawson-Hughes B (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  PubMed  CAS  Google Scholar 

  5. Hernandez CJ, Beaupre GS, Carter DR (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14:843–847

    Article  PubMed  CAS  Google Scholar 

  6. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34

    Article  PubMed  CAS  Google Scholar 

  7. Kammerer CM, Schneider JL, Cole SA et al (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18:2245–2252

    Article  PubMed  CAS  Google Scholar 

  8. Karasik D, Cupples LA, Hannan MT, Kiel DP (2003) Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the Framingham Study. Bone 33:308–316

    Article  PubMed  CAS  Google Scholar 

  9. Ralston SH, Galwey N, Mackay I et al (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951

    Article  PubMed  CAS  Google Scholar 

  10. Deng HW, Deng H, Liu YJ et al (2002) A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am J Hum Genet 70:1138–1151

    Article  PubMed  CAS  Google Scholar 

  11. Deng HW, Xu FH, Huang QY et al (2002) A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J Clin Endocrinol Metab 87:5151–5159

    Article  PubMed  CAS  Google Scholar 

  12. Genant HK, Grampp S, Gluer CC et al (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    Article  PubMed  CAS  Google Scholar 

  13. Recker R, Lappe J, Davies K, Heaney R (2000) Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 15:1965–1973

    Article  PubMed  CAS  Google Scholar 

  14. Deng HW, Mahaney MC, Williams JT et al (2002) Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet Epidemiol 22:12–25

    Article  PubMed  Google Scholar 

  15. Huang QY, Xu FH, Shen H et al (2004) Genome scan for QTLs underlying bone size variation at 10 refined skeletal sites: genetic heterogeneity and the significance of phenotype refinement. Physiol Genomics 17:326–331

    Article  PubMed  CAS  Google Scholar 

  16. O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  CAS  Google Scholar 

  17. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  CAS  Google Scholar 

  18. Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 54:535–543

    PubMed  CAS  Google Scholar 

  19. Amos CI, Zhu DK, Boerwinkle E (1996) Assessing genetic linkage and association with robust components of variance approaches. Ann Hum Genet 60(Pt 2):143–160

    Article  PubMed  CAS  Google Scholar 

  20. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  21. Blangero J, Williams JT, Almasy L (2000) Robust LOD scores for variance component-based linkage analysis. Genet Epidemiol 19 [Suppl 1]:S8–S14

    Article  PubMed  Google Scholar 

  22. Hamet P, Merlo E, Seda O et al (2005) Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am J Hum Genet 76:815–832

    Article  PubMed  CAS  Google Scholar 

  23. Xiao P, Shen H, Guo YF et al. (2006) Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J Bone Miner Res 21:1536–1544

    Article  PubMed  CAS  Google Scholar 

  24. Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE (2005) Mega2: data-handling for facilitating genetic linkage and association analyses. Bioinformatics 21:2556–2557

    Article  PubMed  CAS  Google Scholar 

  25. Camp NJ, Farnham JM (2001) Correcting for multiple analyses in genomewide linkage studies. Ann Hum Genet 65:577–582

    Article  PubMed  CAS  Google Scholar 

  26. Mathias RA, Freidhoff LR, Blumenthal MN (2001) Genome-wide linkage analyses of total serum IgE using variance components analysis in asthmatic families. Genet Epidemiol 20:340–355

    Article  PubMed  CAS  Google Scholar 

  27. Tsukamoto K, Orimo H, Hosoi T et al (2000) Association of bone mineral density with polymorphism of the human matrix Gla protein locus in elderly women. J Bone Miner Metab 18:27–30

    Article  PubMed  CAS  Google Scholar 

  28. Price PA, Thomas GR, Pardini AW, Figueira WF, Caputo JM, Williamson MK (2002) Discovery of a high molecular weight complex of calcium, phosphate, fetuin, and matrix gamma-carboxyglutamic acid protein in the serum of etidronate-treated rats. J Biol Chem 277:3926–3934

    Article  PubMed  CAS  Google Scholar 

  29. Bohlooly Y, Mahlapuu M, Andersen H et al (2004) Osteoporosis in MCHR1-deficient mice. Biochem Biophys Res Commun 318:964–969

    Article  CAS  Google Scholar 

  30. Shen H, Zhang YY, Long JR et al (2004) A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Xq27. J Med Genet 41:743–751

    Article  PubMed  CAS  Google Scholar 

  31. Mochida Y, Parisuthiman D, Yamauchi M (2006) Biglycan is a positive modulator of BMP-2 induced osteoblast differentiation. Adv Exp Med Biol 585:101–113

    Article  PubMed  CAS  Google Scholar 

  32. Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886

    Article  PubMed  CAS  Google Scholar 

  33. Dlouhy SR, Christian JC, Haines JL, Conneally PM, Hodes ME (1987) Localization of the gene for a syndrome of X-linked skeletal dysplasia and mental retardation to Xq27-qter. Hum Genet 75:136–139

    Article  PubMed  CAS  Google Scholar 

  34. Zhang W, Amir R, Stockton DW, Van DV I, Bacino CA, Zoghbi HY (2000) Terminal osseous dysplasia with pigmentary defects maps to human chromosome Xq27.3-xqter. Am J Hum Genet 66:1461–1464

    Article  PubMed  CAS  Google Scholar 

  35. Ogawa S, Hosoi T, Shiraki M et al (2000) Association of estrogen receptor beta gene polymorphism with bone mineral density. Biochem Biophys Res Commun 269:537–541

    Article  PubMed  CAS  Google Scholar 

  36. Scariano JK, Simplicio SG, Montoya GD, Garry PJ, Baumgartner RN (2004) Estrogen receptor beta dinucleotide (CA) repeat polymorphism is significantly associated with bone mineral density in postmenopausal women. Calcif Tissue Int 74:501–508

    Article  PubMed  CAS  Google Scholar 

  37. Mayr-Wohlfart U, Kessler S, Knochel W, Puhl W, Gunther KP (2001) BMP-4 of Xenopus laevis stimulates differentiation of human primary osteoblast-like cells. J Bone Joint Surg Br 83:144–147

    Article  PubMed  CAS  Google Scholar 

  38. Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759

    Article  PubMed  CAS  Google Scholar 

  39. Bayoumi R, Saar K, Lee YA et al (2001) Localisation of a gene for an autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia, and distinctive facies to chromosome 15q26. J Med Genet 38:369–373

    Article  PubMed  CAS  Google Scholar 

  40. Eyre S, Roby P, Wolstencroft K et al (2002) Identification of a locus for a form of spondyloepiphyseal dysplasia on chromosome 15q26.1: exclusion of aggrecan as a candidate gene. J Med Genet 39:634–638

    Article  PubMed  CAS  Google Scholar 

  41. Gleghorn L, Ramesar R, Beighton P, Wallis G (2005) A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am J Hum Genet 77:484–490

    Article  PubMed  CAS  Google Scholar 

  42. Sano M, Inoue S, Hosoi T et al (1995) Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 217:378–383

    Article  PubMed  CAS  Google Scholar 

  43. Laflamme N, Giroux S, Loredo-Osti JC et al (2005) A frequent regulatory variant of the estrogen-related receptor alpha gene associated with BMD in French-Canadian premenopausal women. J Bone Miner Res 20:938–944

    Article  PubMed  CAS  Google Scholar 

  44. Yamada Y, Ando F, Niino N, Shimokata H (2003) Association of polymorphisms of interleukin-6, osteocalcin, and vitamin D receptor genes, alone or in combination, with bone mineral density in community-dwelling Japanese women and men. J Clin Endocrinol Metab 88:3372–3378

    Article  PubMed  CAS  Google Scholar 

  45. Murray RE, McGuigan F, Grant SF, Reid DM, Ralston SH (1997) Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone 21:89–92

    Article  PubMed  CAS  Google Scholar 

  46. Roschger P, Matsuo K, Misof BM et al (2004) Normal mineralization and nanostructure of sclerotic bone in mice over expressing Fra-1. Bone 34:776–782

    Article  PubMed  CAS  Google Scholar 

  47. Bollerslev J, Wilson SG, Dick IM et al (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36:599–606

    Article  PubMed  CAS  Google Scholar 

  48. Sobacchi C, Vezzoni P, Reid DM et al (2004) Association between a polymorphism affecting an AP1 binding site in the promoter of the TCIRG1 gene and bone mass in women. Calcif Tissue Int 74:35–41

    Article  PubMed  CAS  Google Scholar 

  49. Karasik D, Myers RH, Cupples LA et al (2002) Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham Study. J Bone Miner Res 17:1718–1727

    Article  PubMed  CAS  Google Scholar 

  50. Ioannidis JP, Ng MY, Sham PC et al (2007) Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res 22:173–183

    Article  PubMed  CAS  Google Scholar 

  51. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2006) Meta-analysis of genome-wide linkage studies for bone mineral density. J Hum Genet 51:480–486

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Investigators of this work were partially supported by grants from NIH (K01 AR021170-01, R01 AR45349-01, and R01 GM60402-01A1) and an LB595 grant from the State of Nebraska. The study was also benefitted from grants from National Science Foundation of China, Huo Ying Dong Education Foundation, Hunan Province, Xi’an Jiaotong University, and the Ministry of Education of China. The genotyping experiment was performed by Marshfield Center for Medical Genetics and supported by NHLBI Mammalian Genotyping Service (Contract Number HV48141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-W. Deng.

Additional information

Feng Zhang and Peng Xiao contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Xiao, P., Yang, F. et al. A whole genome linkage scan for QTLs underlying peak bone mineral density. Osteoporos Int 19, 303–310 (2008). https://doi.org/10.1007/s00198-007-0468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0468-z

Keywords

Navigation