Skip to main content
Log in

Matrix converter induction motor drive: modeling, simulation and control

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a model in Simulink, which consists of a three-phase matrix converter, an induction motor, a field-oriented controller, and a power supply. A simplified Venturini's modulation algorithm is used in the simulation model. This algorithm provides unity fundamental displacement factor at the input regardless of the load displacement factor and can be easily implemented in closed loop operation. Simulation results are presented for both input and output sides of the converter. These results demonstrate a high-performance matrix converter-fed induction motor drive with unity input displacement factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14a, b.
Fig. 15.

Similar content being viewed by others

References

  1. Venturini M (1980) A new sine wave in sine wave out conversion technique which eliminates reactive elements. In: Proceedings of Powercon 7, San Diego, Calif., pp E3-1, E3-15

  2. Alesina A, Venturini M (1981) Solid-state power conversion: a Fourier analysis approach to generalized transformer synthesis. Proc IEEE Trans Circuit Syst 28:319–330

    Google Scholar 

  3. Empringham L, Wheeler PW, Clare JC (1998) Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques. In: IEEE PESC'98, Fukuoka, Japan, 17–22 May. IEEE, Piscataway, N.J., pp 707–713

  4. Chang J, Sun T, Wang A (2002) Highly compact AC–AC converter achieving a high voltage transfer ratio. Proc IEEE Trans Ind Electron 49:345–352

    Article  Google Scholar 

  5. Klumpner C, Nielson P, Boldea I, Blaabjerg F (2002) A new matrix converter motor (MCM) for industry applications. Proc IEEE Trans Ind Electron 49:325–335

    Article  Google Scholar 

  6. Simon O, Mahlein J, Muenzer MN, Bruckmann M (2002) Modern solutions for industrial matrix-converter applications. Proc IEEE Trans Ind Electron 49:401–406

    Article  Google Scholar 

  7. Zuckherberger A, Weinstock D, Alexandrovitz A (1996) Simulation of three-phase loaded matrix converter. IEE Proc Trans Electr Power Applic 143:294–300

    Article  Google Scholar 

  8. Zuckherberger A, Weinstock D, Alexandrovitz A (1997) Single-phase matrix converter. IEE Proc Trans Electr Power Applic 144:235–240

    Article  Google Scholar 

  9. Sünter S, Altun H, Clare JC (2002) A control technique for compensating the effects of input voltage variations on matrix converter modulation algorithms. Electric Power Components Syst 30:807–822

    Google Scholar 

  10. Matsuo T, Bernet S, Colby RS, Lipo TA (1998) Modeling and simulation of matrix converter/induction motor drive. Math Comput Simul 46:175–195

    Article  Google Scholar 

  11. Bouchiker S, Capolino GA, Poloujadoff M (1998) Vector control of a permanent-magnet synchronous motor using AC–AC matrix converter. Proc IEEE Trans Power Electron 13:1089–1099

    Article  Google Scholar 

  12. Sünter S (1995) A vector controlled matrix converter induction motor drive. PhD Thesis, Department of Electrical and Electronic Engineering, University of Nottingham

  13. Leonhard W (1985) Control of electrical drives. Springer, Berlin Heidelberg New York

  14. Krause PC, Thomas CH (1965) Simulation of symmetrical induction machinery. Proc IEEE Trans Power Apparatus Syst 84:1038–1053

    Google Scholar 

  15. Math Works (1999) MATLAB® for Microsoft Windows. Math Works, Mass.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sünter.

Appendix

Appendix

The ratings of the three phase 50 Hz, 415 V, 4 kW, delta connected, 1,420 rpm squirrel cage induction motor are: R s=5.32 Ω, R r =4.14 Ω, T=27 Nm, L s=0.6 H, L r=0.59 H, J=0.4 kg m2, L o=0.565 H, B=0.707 Nm s/rad, cos φ=0.83, I s=8.1 A, P=4 poles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altun, H., Sünter, S. Matrix converter induction motor drive: modeling, simulation and control. Electr Eng 86, 25–33 (2003). https://doi.org/10.1007/s00202-003-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-003-0179-1

Keywords

Navigation