Skip to main content

Advertisement

Log in

Comparison of SRF/PI- and STRF/PR-based power controllers for grid-tied distributed generation systems

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Grid-tied distributed generation (DG) system-based renewable energy sources such as wind, sun and hydrogen have recently gained a large attention due mainly to environmental issues. In this study, to provide energy for various loads, it is connected to the common direct current bus system after DG system-based fuel cell and solar cell are modeled and simulated. In order to synchronize DG system sources to utility grid, park transformation-based three-phase phase-locked loop technique is used, which is one of the most common methods in the literature. Power control method-based synchronous reference frame with proportional integral controller or stationary reference frame with proportional resonant current controller is used in the DG systems. The performances of two controllers are discussed in this study. Simulation results are obtained for various scenarios at the designed and created simulation model of DG + Grid + Load system. The system is modeled and simulated by using PSCAD/EMTDC software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bouzid AM, Guerrero JM, Cheriti A, Bouhamida M, Sicard P, Benghanem M (2015) A survey on control of electric power distributed generation systems for micro grid applications. Renew Sustain Energy Rev 44:751–766. doi:10.1016/j.rser.2015.01.016

    Article  Google Scholar 

  2. Erfanmanesh T, Dehghani M (2015) Performance improvement in grid-connected fuel cell power plant: an LPV robust control approach. Electr Power Energy Syst 67:306–314. doi:10.1016/j.ijepes.2014.12.006

    Article  Google Scholar 

  3. Chen G, Lewis FL, Feng EN, Song Y (2015) Distributed optimal active power control of multiple generation systems. IEEE Trans Ind Electron 62:7079–7090. doi:10.1109/TIE.2015.2431631

    Article  Google Scholar 

  4. Sathiyanarayanan T, Mishra S (2016) Synchronous reference frame theory based model predictive control for grid connected photovoltaic systems. IFAC-PapersOnLine 4:766–771. doi:10.1016/j.ifacol.2016.03.149

    Article  Google Scholar 

  5. Ma L, Luna A, Rocabert J, Munoz R, Corcoles F, Rodriguez P (2011) Voltage feed-forward performance in stationary reference frame controllers for wind power applications. In: Proceedings of the 2011 international conference on power engineering, energy and electrical drives. doi:10.1109/PowerEng.2011.6036416

  6. Azevedo GMS, Rodriguez P, Cavalcanti MC, Vázquez G, Neves FAS (2009) New control strategy to allow the photovoltaic systems operation under grid faults. In: 2009 Brazilian power electronics conference. doi:10.1109/COBEP.2009.5347705

  7. Parvez M, Elias MFM, Rahim NA, Osman N (2016) Current control techniques for three-phase grid interconnection of renewable power generation systems. Sol Energy 135:29–42. doi:10.1016/j.solener.2016.05.029

    Article  Google Scholar 

  8. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53:1398–1409. doi:10.1109/TIE.2006.881997

    Article  Google Scholar 

  9. Tuyen ND, Fujita G, Funabashi T, Nomura M (2017) Analysis of transient-to-island mode of power electronic interface with conventional dq-current controller and proposed droop-based controller. Electr Eng 99:1–11. doi:10.1007/s00202-016-0380-7

    Article  Google Scholar 

  10. Naderipour A, Zin AAM, Habibuddin MHB, Miveh MR, Guerrero JM (2017) An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions. PloS ONE 12:1–17. doi:10.1371/journal.pone.0164856

    Article  Google Scholar 

  11. Kesler M, Ozdemir E (2011) Synchronous-reference-frame-based control method for UPQC under unbalanced and distorted load conditions. IEEE Trans Ind Electron 58:3967–3975. doi:10.1109/TIE.2010.2100330

    Article  Google Scholar 

  12. Xia Q (2012) Solar photovoltaic system modeling and control. Dissertation. The Faculty of Engineering and Computer Science, University of Denver

  13. Adabi ME, Martinez-Velasco JA, Alepuz S (2017) Modeling and simulation of a MMC-based solid-state transformer. Electr Eng. doi:10.1007/s00202-017-0510-x

  14. Zammit D, Staines CS, Apap M, Licari J (2017) Design of PR current control with selective harmonic compensators using Matlab. J Electr Syst Inf Technol. doi:10.1016/j.jesit.2017.01.003

  15. Almeida PM, Barbosa PG, Oliveira JG, Duarte JL, Ribeiro PF (2015) Digital proportional multi-resonant current controller for improving grid-connected photovoltaic systems. Renew Energy 76:662–669. doi:10.1016/j.renene.2014.11.087

    Article  Google Scholar 

  16. Han Y, Xu L, Khan MM, Chen C (2011) Modeling and controller synthesis for the cascaded H-bridge multilevel active power filter with ADALINE-based identifiers. Electr Eng 93:63–81. doi:10.1007/s00202-010-0192-0

  17. Uphues A, Notzold K, Wegener R, Soter S (2014) Frequency adaptive PR-controller for compensation of current harmonics. In: IECON 2014—40th annual conference of the IEEE industrial electronics society. doi:10.1109/IECON.2014.7048792

  18. Akkinapragada N (2007) Dynamic modeling and simulations of solid oxide fuel cells for grid-tied applications. Dissertation, Faculty Of The Graduate School Of The University Of Missouri-Rolla

  19. Fedakar S (2012) Experimental and simulation studies of a grid connected solid oxide fuel cell. Dissertation, Institute of Sciences and Engineering of Melikşah University

  20. Fedakar S, Bahceci S, Yalcinoz T (2013) Modeling and simulation of SOFC using PSCAD. EuroCon. doi:10.1109/EUROCON.2013.6625112

  21. Rahman SA, Varma RK (2011) PSCAD/EMTDC model of a 3-phase grid connected photovoltaic solar system. North American Power Symposium (NAPS). doi:10.1109/NAPS.2011.6025184

  22. Meral ME, Cuma MU, Teke A, Tümay M, Bayındır KÇ (2014) Experimental and simulation based study of an adaptive filter controlled solid state transfer switch. Electr Eng 96:385–395. doi:10.1007/s00202-014-0305-2

    Article  Google Scholar 

  23. Thakar J (2015) Analysis of grid synchronization techniques for distributed generation system during grid abnormalities. Indian J Appl Res 5:532–534

    Google Scholar 

  24. Jaalam N, Rahim NA, Bakar AHA, Tan C, Haidar AMA (2016) A comprehensive review of synchronization methods for grid-connected converters of renewable energy source. Renew Sustain Energy Rev 59:1471–1481. doi:10.1016/j.rser.2016.01.066

    Article  Google Scholar 

  25. Sarıbulut L (2016) A novel average filter based phase-locked loop for FACTS devices. Electr Power Syst Res 136:289–297. doi:10.1016/j.epsr.2016.02.025

    Article  Google Scholar 

  26. Sundaram E, Venugopal M (2016) On design and implementation of three phase three level shunt active power filter for harmonic reduction using synchronous reference frame theory. Electr Power Energy Syst 81:40–47. doi:10.1016/j.ijepes.2016.02.008

    Article  Google Scholar 

  27. Hojabri M, Ahmad AZ, Toudeshki A, Soheilirad M (2012) An overview on current control techniques for grid connected renewable energy systems. Int Conf Power Energy Syst. doi:10.1109/COBEP.2009.5347705

  28. Sultani JF (2013) Modelling, design and implementation of D–Q control in single-phase grid-connected inverters for photovoltaic systems used in domestic dwellings. Dissertation, Faculty of Technology De Montfort University

  29. Monfared M, Golestan S (2012) Control strategies for single-phase grid integration of small-scale renewable energy sources. Renew Sustain Energy Rev 16:4982–4993. doi:10.1016/j.rser.2012.04.017

    Article  Google Scholar 

  30. Komurcugil H (2014) Combined use of double-band hysteresis current and proportional resonant control methods for single-phase UPS inverters. Industrial Electronics Society. doi:10.1109/IECON.2014.7048670

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emin Meral.

Appendix

Appendix

Grid-tied three-phase LC filter is analyzed with following equations.

figure a
$$\begin{aligned} {\frac{\mathrm{d}{I}_{\mathrm{abc}}}{\mathrm{d}{t}}} = {\frac{V_{i,\mathrm{abc}}}{L}}- {\frac{V_{c,\mathrm{abc}}}{L}}- {\frac{I_{\mathrm{abc}}}{\mathrm{RL}}} \end{aligned}$$
(21)

Dq0/abc and abc/dq0 current Park transformations are expressed as:

$$\begin{aligned} {I}_{{ dq}0}= & {} \sqrt{\frac{2}{3}}\left[ {{\begin{array}{ccc} {\cos ( {\theta } )}&{} {\cos \left( {{\theta }-\frac{2{\pi }}{3}} \right) }&{} {\cos \left( {{\theta }+\frac{2{\pi }}{3}} \right) } \\ {-\sin ( {\theta } )}&{} {-\sin \left( {{\theta }-\frac{2{\pi }}{3}} \right) }&{} {-\sin \left( {{\theta }+\frac{2{\pi }}{3}} \right) } \\ {\frac{\sqrt{2}}{2}}&{} {\frac{\sqrt{2}}{2}}&{} {\frac{\sqrt{2}}{2}} \\ \end{array} }} \right] \nonumber \\&\left[ {{\begin{array}{c} {{I}_{a} } \\ {{I}_{b} } \\ {{I}_{c} } \\ \end{array} }} \right] \end{aligned}$$
(22)
$$\begin{aligned} {I}_{\mathrm{abc}}= & {} \sqrt{\frac{2}{3}}\left[ {{\begin{array}{ccc} {\cos ( {\theta } )}&{} {-\sin ( {\theta } )}&{} {\frac{\sqrt{2}}{2}} \\ {\cos \left( {{\theta }-\frac{2{\pi }}{3}} \right) }&{} {-\sin \left( {{\theta }-\frac{2{\pi }}{3}} \right) }&{} {\frac{\sqrt{2}}{2}} \\ {\cos \left( {{\theta }+\frac{2{\pi }}{3}} \right) }&{} {-\sin \left( {{\theta }+\frac{2{\pi }}{3}} \right) }&{} {\frac{\sqrt{2}}{2}} \\ \end{array} }} \right] \nonumber \\&\left[ {{\begin{array}{c} {{I}_{d} } \\ {{I}_{q} } \\ {{I}_0 } \\ \end{array} }} \right] \end{aligned}$$
(23)

\(\theta \) change with \(\omega {t}\) as:

$$\begin{aligned} {I}_{d}= & {} \sqrt{\frac{2}{3}}\left[ {I}_{a} \cos ( {{\omega t}} )+{I}_{b} \cos \left( {{\omega t}-\frac{2{\pi }}{3}} \right) \right. \nonumber \\&\left. +\,\,{I}_{c} \cos \left( {{\omega t}+\frac{2{\pi }}{3}} \right) \right] \end{aligned}$$
(24)
$$\begin{aligned} {I}_{q}= & {} \sqrt{\frac{2}{3}}\left[ {I}_{a} \sin ( {{\omega t}}) +{I}_{b} \sin \left( {{\omega t}-\frac{2{\pi }}{3}} \right) \right. \nonumber \\&\left. +\,\,{I}_{c} \sin \left( {{\omega t}+\frac{2{\pi }}{3}} \right) \right] \end{aligned}$$
(25)

Taking derivative of \({I}_{{ d}}\) and \({I}_{{ q}}\), we will get (App.6) and (App.8):

$$\begin{aligned} \frac{{\mathrm{d}{I}}_{d} }{{\mathrm{d}{t}}}= & {} \sqrt{\frac{2}{3}}\left[ \frac{\mathrm{d}{{I}}_{a} }{{\mathrm{d}{t}}}\cos \left( {{\omega t}} \right) +\frac{{\mathrm{d}{I}}_{b} }{{\mathrm{d}{t}}}\cos \left( {{\omega t}-\frac{2{\pi }}{3}} \right) \right. \nonumber \\&\qquad \quad \left. +\,\,\frac{{\mathrm{d}{I}}_{c} }{{\mathrm{d}{t}}}\cos \left( {{\omega t}+\frac{2{\pi }}{3}} \right) \right] \nonumber \\&-\sqrt{\frac{2}{3}}{\omega }\left[ {I}_{a} \sin \left( {{\omega t}} \right) +{I}_{b} \sin \left( {{\omega t}-\frac{2{\pi }}{3}} \right) \right. \nonumber \\&\quad \qquad \qquad \left. +\,\,{I}_{c} \sin \left( {{\omega t}+\frac{2{\pi }}{3}} \right) \right] \end{aligned}$$
(26)

Inserting (21) and (25) into equation (26), we will get equation (27):

$$\begin{aligned} \frac{{\mathrm{d}{I}}_{d} }{{\mathrm{d}{t}}}= & {} \frac{{V}_{d} }{{L}}-\frac{{V}_{\mathrm{c},{d}} }{{L}}-\frac{{R}}{{L}}{I}_{d} +{\omega I}_{q} \end{aligned}$$
(27)
$$\begin{aligned} \frac{{\mathrm{d}{I}}_{q} }{{\mathrm{d}{t}}}= & {} -\sqrt{\frac{2}{3}}\left[ \frac{{\mathrm{d}{I}}_{a} }{{\mathrm{d}{t}}}\sin ( {{\omega t}} )+\frac{{\mathrm{d}{I}}_{b} }{{\mathrm{d}{t}}}\sin \left( {{\omega t}-\frac{2{\pi }}{3}} \right) \right. \nonumber \\&\qquad \qquad \left. +\frac{{\mathrm{d}{I}}_{c} }{{\mathrm{d}{t}}}\sin \left( {{\omega t}+\frac{2{\pi }}{3}} \right) \right] \nonumber \\&-\sqrt{\frac{2}{3}}{\omega }\left[ {I}_{a} \cos ( {{\omega t}} )+{I}_{b} \cos \left( {{\omega t}-\frac{2{\pi }}{3}} \right) \right. \nonumber \\&\quad \qquad \qquad \left. +{I}_{c} \cos \left( {{\omega t}+\frac{2{\pi }}{3}} \right) \right] \end{aligned}$$
(28)

Inserting (21) and (24) into equation (28), we will get equation (29):

$$\begin{aligned} \frac{{\mathrm{d}{I}}_{q} }{{\mathrm{d}{t}}}=\frac{{V}_{q}}{{L}}-\frac{{V}_{{ c},{q}}}{{L}}-\frac{{R}}{{L}}{I}_{q} -{\omega I}_{d} \end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meral, M.E., Çelik, D. Comparison of SRF/PI- and STRF/PR-based power controllers for grid-tied distributed generation systems. Electr Eng 100, 633–643 (2018). https://doi.org/10.1007/s00202-017-0530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0530-6

Keywords

Navigation