Skip to main content
Log in

Design of an optimized fractional high-order differential feedback controller for an AVR system

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agee JT, Bingul Z, Kizir S (2015) Higher-order differential feedback control of a flexible-joint manipulator. J Vib Control 21(10):1976–1986

    Article  MathSciNet  Google Scholar 

  2. Agee JT, Bingul Z, Kizir S (2017) Trajectory and vibration control of a single-link flexible-joint manipulator using a distributed higher-order differential feedback controller. J Dyn Syst Meas Control 139(8):081006

    Article  Google Scholar 

  3. Al Gizi AJ (2018) A particle swarm optimization, fuzzy PID controller with generator automatic voltage regulator. Soft Comput pp 1–15

  4. Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576

    Article  Google Scholar 

  5. Anwar MN, Pan S (2014) A frequency domain design of PID controller for an AVR system. J Zhejiang Univ Sci C 15(4):293–299

    Article  Google Scholar 

  6. Basu A, Mohanty S, Sharma R (2016) Designing of the PID and FOPID controllers using conventional tuning techniques. In: 2016 International conference on inventive computation technologies (ICICT), vol 2. IEEE, pp 1–6

  7. Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Frankl Inst 355(13):5534–5559

    Article  MathSciNet  MATH  Google Scholar 

  8. Calderón AJ, Vinagre BM, Feliu V (2006) Fractional order control strategies for power electronic buck converters. Signal Process 86(10):2803–2819

    Article  MATH  Google Scholar 

  9. Chatterjee A, Mukherjee V, Ghoshal S (2009) Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system. Int J Electr Power Energy Syst 31(7–8):323–333

    Article  Google Scholar 

  10. Chatterjee S, Mukherjee V (2016) PID controller for automatic voltage regulator using teaching–learning based optimization technique. Int J Electr Power Energy Syst 77:418–429

    Article  Google Scholar 

  11. Du S, van Wyk BJ, Qi G, Tu C (2009) Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach. Chaos Solitons Fractals 42(3):1900–1913

    Article  MATH  Google Scholar 

  12. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  13. Ekinci S, Hekimoğlu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947

    Article  Google Scholar 

  14. Estakhrouieh MR, Gharaveisi AA (2013) Optimal iterative learning control design for generator voltage regulation system. Turk J Electr Eng Comput Sci 21(Sup. 1):1909–1919

    Article  Google Scholar 

  15. Faradja P, Qi G (2015) Robustness based comparison between a sliding mode controller and a model free controller with the approach of synchronization of nonlinear systems. In: 2015 15th international conference on control, automation and systems (ICCAS). IEEE, pp 36–40

  16. Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391

    Article  Google Scholar 

  17. Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Frankl Inst 348(8):1927–1946

    Article  MATH  Google Scholar 

  18. Gupta T, Sambariya D (2017) Optimal design of fuzzy logic controller for automatic voltage regulator. In: 2017 international conference on information, communication, instrumentation and control (ICICIC). IEEE, pp 1–6

  19. Kashki M, Abdel-Magid YL, Abido MA (2008) A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. In: International conference on intelligent computing. Springer, pp 684–692

  20. Kim DH (2011) Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl Soft Comput 11(1):11–22

    Article  Google Scholar 

  21. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control, vol 7. McGraw-Hill, New York

    Google Scholar 

  22. Machado JT (2013) Optimal controllers with complex order derivatives. J Optim Theory Appl 156(1):2–12

    Article  MathSciNet  MATH  Google Scholar 

  23. Ntouskas S, Sarimveis H, Sopasakis P (2018) Model predictive control for offset-free reference tracking of fractional order systems. Control Eng Pract 71:26–33

    Article  Google Scholar 

  24. Nyabundi S, Qi G, Hamam Y, Munda J (2009) Dc motor control via high order differential feedback control. In: AFRICON, 2009. AFRICON’09. IEEE, pp 1–5

  25. Ortiz-Quisbert ME, Duarte-Mermoud MA, Milla F, Castro-Linares R, Lefranc G (2018) Optimal fractional order adaptive controllers for AVR applications. Electr Eng 100(1):267–283

    Article  Google Scholar 

  26. Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fundam Theory Appl 47(1):25–39

    Article  Google Scholar 

  27. Oustaloup A, Moreau X, Nouillant M (1996) The crone suspension. Control Eng Pract 4(8):1101–1108

    Article  Google Scholar 

  28. Qi G, Chen Z, Yuan Z (2005) Model-free control of affine chaotic systems. Phys Lett A 344(2–4):189–202

    Article  MATH  Google Scholar 

  29. Qi G, Chen Z, Yuan Z (2008) Adaptive high order differential feedback control for affine nonlinear system. Chaos Solitons Fractals 37(1):308–315

    Article  MathSciNet  MATH  Google Scholar 

  30. Ribeiro R, Neto C, Costa F, Rocha T, Barreto R (2015) A sliding-mode voltage regulator for salient pole synchronous generator. Electr Power Syst Res 129:178–184

    Article  Google Scholar 

  31. Sahib MA (2015) A novel optimal PID plus second order derivative controller for AVR system. Eng Sci Technol Int J 18(2):194–206

    Article  Google Scholar 

  32. Sahib MA, Ahmed BS (2016) A new multiobjective performance criterion used in PID tuning optimization algorithms. J Adv Res 7(1):125–134

    Article  Google Scholar 

  33. dos Santos Coelho L (2009) Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos Solitons Fractals 39(4):1504–1514

    Article  Google Scholar 

  34. Shi X, Dai Y, Liu Z, Qi G (2010) High order differential feedback controller and its application in servo control system of NC machine tools. In: 2010 international conference on system science, engineering design and manufacturing informatization (ICSEM). IEEE, vol 1, pp 241–244

  35. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 62:409–417

    Article  MathSciNet  Google Scholar 

  36. Tang Y, Cui M, Hua C, Li L, Yang Y (2012) Optimum design of fractional order pi\(\lambda \)d\(\mu \) controller for AVR system using chaotic ant swarm. Expert Syst Appl 39(8):6887–6896

    Article  Google Scholar 

  37. Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Process Control 20(3):285–291

    Article  Google Scholar 

  38. Tavazoei MS (2014) Time response analysis of fractional-order control systems: a survey on recent results. Fract Calc Appl Anal 17(2):440–461

    Article  MathSciNet  MATH  Google Scholar 

  39. Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3(3):231–248

    MathSciNet  MATH  Google Scholar 

  40. Wei X, Jingjing M, Hongyan J, Fei Y (2010) The main steam temperature cascade control of high order differential of feedback controller. In: 2010 international conference on intelligent system design and engineering application (ISDEA). IEEE, vol 2, pp 683–687

  41. Xue W, Xue Y, Qi G, Gao J, Zheng S (2007) Study of high order differential feedback control of DC-link voltage in active power filter. In: 2007 IEEE international conference on automation and logistics. IEEE, pp 1063–1066

  42. Yüce A, Deniz FN, Tan N, Atherton DP (2015) Obtaining the time response of control systems with fractional order PID from frequency responses. In: 2015 9th international conference on electrical and electronics engineering (ELECO). IEEE, pp 832–836

  43. Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12):1380–1387

    Article  Google Scholar 

  44. Zhu H, Li L, Zhao Y, Guo Y, Yang Y (2009) CAS algorithm-based optimum design of PID controller in AVR system. Chaos Solitons Fractals 42(2):792–800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Sinasi Ayas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayas, M.S. Design of an optimized fractional high-order differential feedback controller for an AVR system. Electr Eng 101, 1221–1233 (2019). https://doi.org/10.1007/s00202-019-00842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00842-5

Keywords

Navigation