Skip to main content
Log in

Input–output current regulation of Zeta converter using an optimized dual-loop current controller

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, an optimized dual-loop current controller for current balancing of a Zeta converter is presented and analysed in continuous current mode. The proposed strategy has an inner loop which is defined based on the input inductor current control. The reference signal of the sliding manifold is changed through an outer loop which works to regulate the output current. The stability analysis of the two-loop controllers is established by means of Routh–Hurwitz criterion and the equivalent control method. Then, the gains of the outer loop compensator are optimized using the integral gain maximization method to guarantee the robustness and disturbance rejection of the closed loop system in the presence of model uncertainties. The controller performance is investigated in depth taking into account the parametric variations associated with the converter operation in various equilibrium points. Moreover, a laboratory set-up of the suggested controller has been implemented by using analogue component devices. The experimental results demonstrate the effective performance of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Celebi M (2017) Efficiency optimization of a conventional boost DC/DC converter. Electr Eng 100(2):803–809

    Article  MathSciNet  Google Scholar 

  2. Aylapogu PK, Bhajana VVSK (2017) Modeling and implementation of a new ZCS interleaved bidirectional buck–boost DC/DC converter for energy storage systems. Electr Eng 99(4):1283–1293

    Article  Google Scholar 

  3. Goudarzian A, Nasiri H, Abjadi N (2016) Design and implementation of a constant frequency sliding mode controller for a Luo converter. Int J Eng 29(2):202–210

    Google Scholar 

  4. Veerachary M (2001) Fourth order buck converter for maximum power point tracking applications. IEEE Trans Aerosp Electron Syst 47(2):896–911

    Article  Google Scholar 

  5. Hosseinzadeh M, Abjadi N, Kargar A, Arab G (2014) Application of brain emotional learning-based intelligent controller to power flow control with thyristor-controlled series capacitance. IET Gener Transm Dis 9(14):1964–1976

    Article  Google Scholar 

  6. Naika BB, Mehtab AJ (2017) Sliding mode controller with modified sliding function for DC/DC Buck converter. ISA Trans 70:279–287

    Article  Google Scholar 

  7. Tang M, Stuart T (2003) Selective buck-boost equalizer for series battery packs. IEEE Trans Aerosp Electron Syst 39(2):521–532

    Article  Google Scholar 

  8. Almasi O, Fereshtehpoor V, Khooban MH, Blaabjerg F (2017) Analysis, control and design of a non-inverting buck-boost converter: a bump-less two-level T-S fuzzy PI control. ISA Trans 67:515–527

    Article  Google Scholar 

  9. Chen AS (2012) PI and sliding mode control of a Cuk converter. IEEE Trans Power Electron 27(8):3695–3703

    Article  Google Scholar 

  10. Veerachary M (2012) Two loop controlled buck-SEPIC converter for input source power management. IEEE Trans Aerosp Electron Syst 59(11):4075–4087

    Google Scholar 

  11. Wu TS, Liang SA, Chen YM (2003) Design optimization for asymmetrical ZVS-PWM zeta converter. IEEE Trans Aerosp Electron Syst 39(2):521–532

    Article  Google Scholar 

  12. Singh S, Singh B, Bhuvaneswari G, Bist V (2015) Power factor corrected Zeta converter based improved power quality switched mode power supply. IEEE Trans Ind Electron 62(9):5422–5433

    Article  Google Scholar 

  13. Kumar R, Singh B (2016) BLDC motor-driven solar PV array-fed water pumping system employing Zeta converter. IEEE Trans Ind Appl 52(3):2315–2322

    Article  Google Scholar 

  14. Singh B, Bist B (2015) Power quality improvements in a Zeta converter for brushless DC motor drives. IET Sci Measur Technol 9(3):351–361

    Article  Google Scholar 

  15. Surapaneni RK, Rathore AK (2015) A single-stage CCM Zeta microinverter for solar photovoltaic AC module. IEEE J Emerg Select Top Power Electron 3(4):892–900

    Article  Google Scholar 

  16. Shrivastava A, Singh B, Pal S (2015) A novel wall-switched step-dimming concept in LED lighting systems using PFC Zeta converter. IEEE Trans Ind Electron 62(10):6272–6283

    Article  Google Scholar 

  17. Veerachary M (2004) General rules for signals flow graph modeling and analysis of DC/DC converters. IEEE Trans Aerosp Electron Syst 40(1):259–271

    Article  Google Scholar 

  18. Lee C, Yang J, Jiang J (2010) Assessment of PEM fuel cells-based DC/DC power conversion for applications in AUVs. IEEE Trans Aerosp Electron Syst 46(4):1834–1847

    Article  Google Scholar 

  19. Chou M, Liaw C (2014) PMSM-driven satellite reaction wheel system with adjustable DC-link voltage. IEEE Trans Aerosp Electron Syst 50(2):1359–1373

    Article  Google Scholar 

  20. Yang S, Wang P, Tang Y (2018) Feedback linearization-based current control strategy for modular multilevel converters. IEEE Trans Power Electron 33(1):161–174

    Google Scholar 

  21. Shi ZY, Zhong YS, Xu WL (2005) Decentralized robust tracking control for uncertain robots. Electr Eng 87(4):217–226

    Article  Google Scholar 

  22. Bennaoui A, Saadi S (2017) Type-2 fuzzy logic PID controller and different uncertainties design for boost DC/DC converters. Electr Eng 99(1):203–211

    Article  Google Scholar 

  23. Salimi M, Soltani J, Markadeh GA, Abjadi NR (2013) Indirect output voltage regulation of dc-dc buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach. IET Power Electron 6(4):732–741

    Article  Google Scholar 

  24. Abjadi N, Goudarzian A, Arab Markadeh G, Valipour Z (2018) Reduced-order backstepping controller for POESLL DC/DC converter based on pulse width modulation. Iran J Sci Technol Trans Electr Eng. https://doi.org/10.1007/s40998-018-0096-y(0123456789

    Article  Google Scholar 

  25. Wai RJ, Shih LC (2012) Adaptive fuzzy-neural-network design for voltage tracking control of a DC/DC boost converter. IEEE Trans Power Electron 27(4):2104–2115

    Article  Google Scholar 

  26. Wang Z, Li S, Wang J, Li Q (2017) Robust control for disturbed buck converters based on two GPI observers. Control Eng Pract Elsevier J 66:13–22

    Article  Google Scholar 

  27. Kim M (2015) Proportional-integral (PI) compensator design of duty-cycle-controlled buck LED driver. IEEE Trans Power Electron 30(7):3852–3859

    Article  Google Scholar 

  28. Kim M (2018) High-performance current-mode-controller design of buck LED driver with slope compensation. IEEE Trans Power Electron 33(1):641–649

    Article  Google Scholar 

  29. Abjadi NR (2014) Sliding-mode control of a six-phase series/parallel connected two induction motors drive. ISA Trans 53:1847–1856

    Article  Google Scholar 

  30. Mohanty P, Panda A (2016) Fixed frequency sliding mode (SM) control scheme based on current control manifold for improved dynamic performance of boost PFC converter. IEEE J Emerg Sel Top Power Electron 5(1):576–586

    Article  Google Scholar 

  31. Nairi H, Goudarzian A, Pourbagher R, Derakhshandeh SY (2017) PI and PWM sliding mode control of POESLL converter. IEEE Trans Aerosp Electron Syst 53(5):2167–2177

    Article  Google Scholar 

  32. Mamarelis E, Petrone G, Spagnuolo G (2014) Design of a sliding-mode-controlled SEPIC for PV MPPT applications. IEEE Trans Ind Electron 61(7):3387–3398

    Article  Google Scholar 

  33. Chincholkar SH, Jiang W, Chan SY (2018) A modified hysteresis-modulation-based sliding mode control for improved performance in hybrid DC/DC boost converter. IEEE Trans Circuits Syst II Exp Briefs 65(11):1683–1687

    Article  Google Scholar 

  34. Wang Y, Ruan X, Leng Y, Li Y (2018) Hysteresis current control for multilevel converter in parallel-form switch-linear hybrid envelope tracking power supply. Power Electron., To be published, IEEE Trans. https://doi.org/10.1109/TPEL.2018.2835640

    Book  Google Scholar 

  35. Silva-Ortigoza R, Hernandez-Guzman V, Antonio Cruz M, Munoz Carrillo D (2015) DC/DC buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Trans Power Electron 30(2):1076–1084

    Article  Google Scholar 

  36. Ahmadzadeh S, Arab Markadeh G, Blaabjerg F (2017) Voltage regulation of the Y-source boost DC/DC converter considering effects of leakage inductances based on cascaded sliding mode control. IET Power Electron 10(11):1333–1343

    Article  Google Scholar 

  37. Qi W, Li S, Tan SC, Hui SY (2018) Parabolic modulated sliding mode voltage control of buck converter. IEEE Trans Ind Electron 65(1):844–854

    Article  Google Scholar 

  38. Goudarzian A, Khosravi A, Abjadi N (2018) Sliding mode current control of NOCULL converter based on hysteresis modulation method in a wide range of operating conditions. ISA Trans. https://doi.org/10.1016/j.isatra.2018.10.007

    Article  Google Scholar 

  39. Kessai A, Rahmani L (2014) Ga-Optimized parameters of sliding mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters. IEEE Trans Power Electron 29(6):3159–3165

    Article  Google Scholar 

  40. Panagopoulos H, Astrom K (1999) “PID control design and loop shaping.” In: Proceedings of the IEEE international conference on control application, Aug, pp 103–108

  41. Panagopoulus H, Astrom K, Hagglund T (2002) Design of PID controllers based on constrained optimisation. IEE Proc Control Theory Appl 149(1):32–40

    Article  Google Scholar 

  42. Astrom K, Panagopoulus H, Hagglund T (1998) Design of PI controllers based on Non-convex optimization. Automatica 34(5):585–601

    Article  MathSciNet  Google Scholar 

  43. LaSalle J (1976) “The stability of dynamical systems.” In: Proceedings of the regional conference series in applied mathematics, 25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Goudarzian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

When the inner loop is nearly constant (i.e. \( \frac{{{\text{d}}I_{E} (t)}}{{{\text{d}}t}} < < \frac{{{\text{d}}i_{O} }}{{{\text{d}}t}} \) and also \( I_{E} (t) = I_{E} \)), the ideal equation of the closed loop system in (16) can be expressed as:

$$ \begin{aligned} C\frac{{{\text{d}}v_{C} }}{{{\text{d}}t}} & = - i_{o} \left( {\frac{{v_{C} }}{{E + v_{C} }}} \right) + I_{E} \left( {\frac{E}{{E + v_{C} }}} \right) \\ L_{2} \frac{{{\text{d}}i_{o} }}{{{\text{d}}t}} & = v_{C} - v_{O} \\ \end{aligned} $$
(a.1)

where \( v_{o} = Ri_{O} \). The equilibrium point of the system given by (17) can be rewritten as follows:

$$ I_{L} = I_{E} = \frac{{RI_{O}^{2} }}{E},_{{}} V_{C} = RI_{O}^{2} ,_{{}} I_{O} = I_{d} $$
(a.2)

By using (a.2) and with some manipulations, (a.1) can be expressed as follows:

$$ \begin{aligned} C\frac{{{\text{d}}v_{C} }}{{{\text{d}}t}} & = - i_{o} \left( {\frac{{v_{C} - V_{C} }}{{E + v_{C} }}} \right) - RI_{d} \left( {\frac{{i_{O} - I_{d} }}{{E + v_{C} }}} \right) \\ L_{2} \frac{{{\text{d}}i_{o} }}{{{\text{d}}t}} & = - R(i_{O} - I_{d} ) + (v_{C} - V_{C} ) \\ \end{aligned} $$
(a.3)

Now, select the following positive definite Lyapunov function:

$$ V(v_{C} ,i_{O} ) = \frac{1}{2}C(v_{C} - V_{C} )^{2} + \frac{1}{2}L_{2} (i_{O} - I_{d} )^{2} \ge 0 $$
(a.4)

The time derivative of the defined Lyapanov function is given by:

$$ \mathop V\limits^{.} (v_{C} ,i_{O} ) = - \frac{{i_{O} }}{{E + v_{C} }}(v_{C} - V_{C} )^{2} - \frac{{RI_{d} }}{{E + v_{C} }}(v_{C} - V_{C} )(i_{O} - I_{d} ) - R(i_{O} - I_{d} )^{2} + (v_{C} - V_{C} )(i_{O} - I_{d} ) $$
(a.5)

Expressing (a.5) in form of \( \mathop V\limits^{.} = - XQX^{T} \), leads to:

$$ \dot{V}(v_{C} ,i_{O} ) = - XQX^{T} = - [v_{C} i_{O} ]\left[ {\begin{array}{*{20}c} {\frac{{i_{O} }}{{E + v_{C} }}} & {\frac{{RI_{d} }}{{E + v_{C} }}} \\ { - 1} & R \\ \end{array} } \right][v_{C} i_{O} ]^{T} $$
(a.6)

If \( Q > 0 \); then, \( \mathop V\limits^{.} (v_{C} ,i_{O} ) \) will be negative definite. For the Zeta converter, it is valid: \( R > 0 \) and \( I_{d} > 0 \). If the conditions \( i_{O} > - I_{d} \) and \( v_{C} > - E \) are fulfilled, then \( \mathop V\limits^{.} (v_{C} ,i_{O} ) < 0 \). Therefore, the proposed system is asymptotically stable based on the LaSalle’s stability principles [43].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzian, A., Khosravi, A. & Abjadi, N.R. Input–output current regulation of Zeta converter using an optimized dual-loop current controller. Electr Eng 102, 279–291 (2020). https://doi.org/10.1007/s00202-019-00872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00872-z

Keywords

Navigation