Skip to main content
Log in

A generalized chaotic baker map configuration for reducing the power loss under shading conditions

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Shading of photo-voltaic panels is one of most common reason for power reduction in practical scenarios. This also causes multiple maximum peaks, thereby resulting in distortion of characteristic curves. In order to overcome the effect of shading, reconfiguration of panels is essential. In this work, the Chaotic Baker Map is proposed to reconfigure the panels in Solar Photo-Voltaic (SPV) Array. The Chaotic Baker Map, being an image processing technique, relocates the panels in SPV Array which is analogous to relocation of pixels within an image. The proposed approach augments the output power and minimizes the power loss by dispersing the concentrated shade throughout the array. The results of the proposed approach are compared to hitherto known configurations under wide range of shading spectrum for different sizes of SPV Array to support the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abitha K, Bharathan PK (2016) Secure communication based on Rubik’s cube algorithm and chaotic baker map. Proc Technol 24:782–789

    Article  Google Scholar 

  2. Babu TS, Ram JP, Dragičević T, Miyatake M, Blaabjerg F, Rajasekar N (2018) Particle swarm optimization based solar pv array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans Sustain Energy 9(1):74–85

    Article  Google Scholar 

  3. Badran O, Mamlook R, Abdulhadi E (2012) Toward clean environment: evaluation of solar electric power technologies using fuzzy logic. Clean Technol Environ Policy 14(2):357–367

    Article  Google Scholar 

  4. Bonthagorla PK, Mikkili S (2020) A novel fixed pv array configuration for harvesting maximum power from shaded modules by reducing the number of cross-ties. IEEE J Emerg Selected Top Power Electron

  5. Chan DS, Phang JC (1987) Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics. IEEE Trans Electron Device 34(2):286–293

    Article  Google Scholar 

  6. Dhanalakshmi B, Rajasekar N (2018) Dominance square based array reconfiguration scheme for power loss reduction in solar PhotoVoltaic (PV) systems. Energy Convers Manage 156(September 2017):84–102. https://doi.org/10.1016/j.enconman.2017.10.080

    Article  Google Scholar 

  7. Fathy A, Ziedan I, Amer D (2018) Improved teaching-learning-based optimization algorithm-based maximum power point trackers for photovoltaic system. Electr Eng 100(3):1773–1784. https://doi.org/10.1007/s00202-017-0654-8

    Article  Google Scholar 

  8. Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcat Chaos 8(06):1259–1284

    Article  MathSciNet  Google Scholar 

  9. Guruambeth R, Ramabadran R (2016) Fuzzy logic controller for partial shaded photovoltaic array fed modular multilevel converter. IET Power Electron 9(8):1694–1702

    Article  Google Scholar 

  10. Josephine R, Suja S, Karunambika G (2014) Combination of fixed configuration and reconfiguration method for maximum power extraction from PV arrays. Adv Natural Appl Sci 8:67–73

    Google Scholar 

  11. Kumar S, Sahu HS, Nayak SK (2018) Estimation of mpp of a double diode model pv module from explicit I–V characteristic. IEEE Trans Ind Electron 66(9):7032–7042

    Article  Google Scholar 

  12. Mahmoud Y, El-Saadany EF (2017) Enhanced reconfiguration method for reducing mismatch losses in pv systems. IEEE J Photovolt 7(6):1746–1754

    Article  Google Scholar 

  13. Malathy S, Ramaprabha R (2015) Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions. Renew Sustain Energy Rev 49:672–679

    Article  Google Scholar 

  14. Manjunath, Suresh HN Rajanna S (2019) Performance enhancement of Hybrid interconnected Solar Photovoltaic array using shade dispersion Magic Square Puzzle Pattern technique under partial shading conditions. Sol Energy 194(May:602–617. https://doi.org/10.1016/j.solener.2019.10.068

    Article  Google Scholar 

  15. Mehta HK, Warke H, Kukadiya K, Panchal AK (2019) Accurate expressions for single-diode-model solar cell parameterization. IEEE J Photovolt 9(3):803–810

    Article  Google Scholar 

  16. Naeem EA, Elnaby MMA, El-sayed HS, El-Samie FEA, Faragallah OS (2016) Wavelet fusion for encrypting images with a few details. Comput Electric Eng 54:450–470

    Article  Google Scholar 

  17. Naeem EA, Elnaby MMA, Soliman NF, Abbas AM, Faragallah OS, Semary N, Hadhoud MM, Alshebeili SA, El-Samie FEA (2014) Efficient implementation of chaotic image encryption in transform domains. J Syst Softw 97:118–127

    Article  Google Scholar 

  18. Pareek S, Dahiya R (2016) Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules. Energy 95:561–572

    Article  Google Scholar 

  19. Parlak KŞ (2014) Pv array reconfiguration method under partial shading conditions. Int J Electric Power Energy Syst 63:713–721

    Article  Google Scholar 

  20. Patel H, Agarwal V (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Ind Electron 55(4):1689–1698

    Article  Google Scholar 

  21. Potnuru SR, Pattabiraman D, Ganesan SI, Chilakapati N (2015) Positioning of PV panels for reduction in line losses and mismatch losses in PV array. Renew Energy 78:264–275

    Article  Google Scholar 

  22. Premkumar M, Babu TS, Umashankar S, Sowmya R (2020) A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik, 164559

  23. Premkumar M, Kumar C, Sowmya R (2020) Mathematical modelling of solar photovoltaic cell/panel/array based on the physical parameters from the manufacturer’s datasheet. Int J Renew Energy Dev 9(1):

  24. Rakesh N, Madhavaram TV (2016) Performance enhancement of partially shaded solar pv array using novel shade dispersion technique. Front Energy 10(2):227–239

    Article  Google Scholar 

  25. Ramaprabha R, Balaji M, Mathur B (2012) Maximum power point tracking of partially shaded solar pv system using modified fibonacci search method with fuzzy controller. Int J Electric Power Energy Syst 43(1):754–765

    Article  Google Scholar 

  26. Rani BI, Ilango GS, Nagamani C (2013) Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Trans Sustain Energy 4(3):594–601

    Article  Google Scholar 

  27. Rezk H, Fathy A (2017) Simulation of global MPPT based on teaching-learning-based optimization technique for partially shaded PV system. Electr Eng 99(3):847–859. https://doi.org/10.1007/s00202-016-0449-3

    Article  Google Scholar 

  28. Sagar G, Pathak D, Gaur P, Jain V (2020) A su do ku puzzle based shade dispersion for maximum power enhancement of partially shaded hybrid bridge-link-total-cross-tied pv array. Sol Energy 204:161–180

    Article  Google Scholar 

  29. Sahu HS, Nayak SK (2016) Numerical approach to estimate the maximum power point of a photovoltaic array. IET Gener Trans Distrib 10(11):2670–2680

    Article  Google Scholar 

  30. Sahu HS, Nayak SK, Mishra S (2016) Maximizing the power generation of a partially shaded PV array. IEEE J Emerg Select Top Power Electron 4(2):626–637

    Article  Google Scholar 

  31. Sai Krishna G, Moger T (2019) Reconfiguration strategies for reducing partial shading effects in photovoltaic arrays: state of the art. Sol Energy 182(July 2018):429–452. https://doi.org/10.1016/j.solener.2019.02.057

    Article  Google Scholar 

  32. Satpathy PR, Sharma R (2018) Power loss reduction in partially shaded PV arrays by a static SDP technique. Energy 156:569–585

    Article  Google Scholar 

  33. Satpathy PR, Sharma R, Jena S (2017) A shade dispersion interconnection scheme for partially shaded modules in a solar pv array network. Energy 139:350–365

    Article  Google Scholar 

  34. Tabanjat A, Becherif M, Hissel D (2015) Reconfiguration solution for shaded pv panels using switching control. Renew Energy 82:4–13

    Article  Google Scholar 

  35. Tatabhatla VMR, Agarwal A, Kanumuri T (2019) Minimising the power loss of solar photo voltaic array through efficient reconfiguration of panels. Proc Inst Mech Eng A J Power Energy. https://doi.org/10.1177/0957650919871864

    Article  Google Scholar 

  36. Tatabhatla VMR, Agarwal A, Kanumuri T (2019) Chaotic baker map-based array reconfiguration in solar photo-voltaic systems under shading conditions. Proc Inst Mech Eng A J Power Energy 233(5):559–575. https://doi.org/10.1177/0957650919857436

    Article  Google Scholar 

  37. Tatabhatla VMR, Agarwal A, Kanumuri T (2019) Improved power generation by dispersing the uniform and non-uniform partial shades in solar photovoltaic array. Energy Convers Manage 197(August):111825. https://doi.org/10.1016/j.enconman.2019.111825

    Article  Google Scholar 

  38. Tatabhatla VMR, Agarwal A, Kanumuri T (2019) Performance enhancement by shade dispersion of Solar Photo-Voltaic array under continuous dynamic partial shading conditions. J Clean Prod 213:1–18. https://doi.org/10.1016/j.jclepro.2018.11.015

    Article  Google Scholar 

  39. Vasudevan B, Sinha AK (2018) Reliability improvement of reconfigurable distribution system using GA and PSO. Electr Eng 100(2):1263–1275. https://doi.org/10.1007/s00202-017-0580-9

    Article  Google Scholar 

  40. Villa LFL, Picault D, Raison B, Bacha S, Labonne A (2012) Maximizing the power output of partially shaded photovoltaic plants through optimization of the interconnections among its modules. IEEE J Photovolt 2(2):154–163

    Article  Google Scholar 

  41. Wang YJ, Hsu PC (2011) An investigation on partial shading of pv modules with different connection configurations of pv cells. Energy 36(5):3069–3078

    Article  Google Scholar 

  42. Yousri D, Babu TS, Allam D, Ramachandaramurthy VK, Etiba MB (2019) A novel chaotic flower pollination algorithm for global maximum power point tracking for photovoltaic system under partial shading conditions. IEEE Access 7:121432–121445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatabhatla, V.M.R., Agarwal, A. & Kanumuri, T. A generalized chaotic baker map configuration for reducing the power loss under shading conditions. Electr Eng 102, 2227–2244 (2020). https://doi.org/10.1007/s00202-020-01016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01016-4

Keywords

Navigation